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CHAPTER I

INTRODUCTION

In this thesis a numerical algorithm is presented which solves the conservation laws of

gas-dynamics on a computational domain that is created using a Cartesian, cell-based grid

generation procedure. This grid generation process creates non-overlapping volumes

which fill the domain whereupon the steady, compressible Navier-Stokes equations are

solved in discrete conservation law form using an upwinded, finite-volume approach. A

non-traditional means of storing the data associated with the grids is used that is based

upon a tree data structure, easily allowing solution-adaptive mesh refinement. The motiva-

tion behind this particular solution strategy and the inherent strengths and weaknesses

associated with it is outlined below.

1.1 Compressible vs. Incompressible Formulation

Since it is desired to compute single-phase flows of fluids in the continuum range the

Navier-Stokes equations are chosen to be solved. The choice of the compressible over the

incompressible form of the equations is made since by the introduction of a suitable pre-

conditioning strategy, incompressible flows can be solved with the same, compressible

based flow solver. Solving the compressible equations for extremely low Mach number

flows causes the equations to become ill-conditioned, and has spurred a great deal of inter-

est in conditioning the resulting viscous and inviscid compressible equations through the

use of matrix preconditioning: see, for instance [81][46][85][78][45][18] and many others.

For application of preconditioning in an unstructured formulation, see [39] and [40]. This

ill-conditioning is due to the increasing disparity of the eigenvalues of the inviscid flux

Jacobian with vanishing Mach number. If formulated in terms of primitive variables the

ill-conditioning can be traced to a vanishing of the pressure from the Jacobian's diagonal.

1
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Regardless of the formulation, successful progress is being made in developing suitable

pre-conditioning strategies, providing a means of retro-fitting existing, compressible

based solvers into solvers using a matrix pre-conditioning approach. In this way, a com-

pressibility based, Cartesian-cell code could be used to compute low Mach number flows

using a preconditioning strategy.

1.2 Conservative vs. Non-Conservative Formulation

The physical laws governing the flows of fluids are found by treating the fluid as a con-

tinuum and applying the concept of conservation to the mass, momentum and energy con-

rained within a control volume, yielding a set of conservation laws. When applied to a

differential control volume, which is shrunk to a vanishingly small size, this results in a set

of partial differential equations which are typically referred to, as a set, as the Navier-

Stokes equations. Since the conservation concept really applies to a volume, it is best,

instead, to view the governing fluid equations in the integral format.

The concept of conservation is at the cornerstone of many physical phenomena, and it

is no surprise that it can be used to describe fluid flows successfully. From a heuristic

standpoint, it only makes sense then to solve the governing equations in a discrete way

which mimics this important framework; to satisfy conservation laws discretely upon con-

trol volumes which tile the domain upon which the flow solution is desired. Importantly,

as pointed out in the landmark work by Lax ([42], [43] and [44]) this type of formulation

allows the admittance of weak solutions of the equations. When a proper entropy produc-

ing mechanism is chosen, the physically correct weak solution can be found, which will

have the correct jumps across discontinuities and the proper speed of the discontinuities.

These properties are essential when computing compressible flows since shock waves and

contact discontinuities are present in all but the simplest cases. For an internal flow, con-

servation in even a shock- or discontinuity-free flow is extremely important and is guaran-
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teedby theuseof a conservative differencing scheme. The finite-volume formulation

locally satisfies conservation on a cell by cell basis, which when all the cells are assembled

to tile the domain, naturally conserves the quantities globally. It is due to these very

important properties that the finite-volume formulation is used here to solve the compress-

ible Navier-Stokes equations.

1.3 Unstructured vs. Structured Grid Formulation

Before the rationale behind the choice of an unstructured type of grid is explained, it is

first necessary to discuss the benefits and drawbacks of what is traditionally referred to as

a structured grid approach. A structured grid approach stores the data associated with the

grid geometry and flow solution in logically ordered one-, two- or three-dimensional

arrays (corresponding to solving a problem in one-, two- or three spatial dimensions). This

has direct restrictions upon the topology of the grids that may be described and limits the

connectivity of cells to their neighbors. For a structured grid approach, each cell has only

one cell lying on each of its faces. These local neighbor cells are always needed in a com-

putation, for, say, reconstructing the local solution gradients in a cell, and for a structured

approach are found simply by incrementing or decrementing indices in the arrays. This

simplification in the data structure has a large impact upon the simplicity of the resulting

flow solver and due to this simplicity, can result in computationaUy efficient solution strat-

egies. By locating all of the data in contiguous locations in memory, which is naturally

done by storing the data in arrays, compilers can create very efficient code, and if care is

taken on vector class supercomputers, extremely fast computations can result.

Another benefit that can be realized for simple domains is the smoothness of the grid.

This grid smoothness is a direct consequence from the solution strategy used to form the

grid. There are currently two classes of methods used to generate body-fitted, or structured

grids; algebraic based and partial differential equation based. (A compilation of many
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methods may be found in [77].) Algebraic based methods are more easily applied to com-

plicated geometries, but typically require a smoothing operation that is locally applied to

the algebraically generated grid. This smoothing operation can cause problems, since it

does not preclude grid line crossing [75] and does not always yield the desired smoothness

that can be obtained by the other class of grid generation procedure, PDE based methods.

The most widely used PDE based approach solves elliptic equations where the spatial

coordinates of the grid lines are the dependent variables. Clustering is achieved by adding

user-specified source terms to the equations. The benefits of this approach come by the

smoothness guaranteed by the elliptic equations. Since solutions to elliptic equations sat-

isfy certain differentiability properties and guarantee satisfaction of a local maximum

principle, smooth grids can be obtained and grid line crossing can be eliminated. Another

benefit of structured grid generation is the ability to cluster high aspect ratio ceils in

regions where there are obvious viscous layers, such as near walls and in the wakes of

bodies. This requires special care in the stretching for viscous computations, which has

consequences shown analytically in Chapter III. All of these properties: speed; simplicity;

smoothness and anisotropy; have made structured grids a very valuable tool. To highlight

the differences amongst the structured, unstructured and Cartesian approaches, representa-

tive grids near the leading edge of an airfoil are shown. Figure 1.1 shows a typical grid

generated with a structured grid approach for an inviscid computation.

The big drawback of using structured grids is directly tied to the trait which makes

them so simple; the grid data structure. By limiting ceils to have a set number of sides, the

domain about complicated geometries must be decomposed into logical zones or patches.

Each patch needs to have the same number of sides as the cells which make up the

domain. In two dimensions, this means four-sided patches, since the base elements in the

domain are quadrilaterals, and in three-dimensions zones of six sides, since the base ele-

ments are hexahedra. Then, in each zone, a grid generation approach is applied and the

resulting iso-coordinate lines joined, yielding a grid network and the computational vol-



umes.Dependingon the flow solverto beused,thegrid linesmayneedto becontiguous

acrossthepatches,increasingthedifficulty of theproblem.Thispatchingor zoning

approachbecomesincreasinglycomplicatedasthecomplexityof thegeometryincreases.

Forrealisticgeometries,it canliterally takeman-monthsorman-yearsto generateasingle

grid.So,a calculationthatmayonly taketensof hoursonasupercomputermighthave

takenmonthsof grid generationtime. Thisdownsideof structuredgridshasled to the

recentfavorgivento unstructuredgrids to computetheflowsaboutcomplicatedgeome-

tries.

Figure 1.1ExampleStructuredGrid

1.4 Cartesian vs. Unstructured Grids

Traditional unstructured grids that are in use by the aerodynamic community today are

typically based upon triangular (in two-dimensions) or tetrahedral (in three-dimensions)

elements. This means that the grid generation process now entails specifying the bounding

surfaces and filling the domain with these elements. The volume grid is generated so that

the cells on the boundaries of the domain have faces coincident with the boundaries. In

this sense, the volume grid is constrained by the boundary discretization. There are two
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differentmethodsthat arecurrentlybeingusedto generatethevolumegridsfor unstruc-

tured meshes. One, the advancing front method, is based upon starting at the boundaries

and advancing a "front" of vertices into the computational domain. The new vertices are

connected with existing nodes (triangulated) and the front is advanced until the entire

domain is tessellated. A good description of this approach and other unstructured

approaches may be found in [89] and [5]. Grid size and smoothness can be controlled by

source terms which vary in space according to a user specified criteria. Since these source

terms rely upon some sort of background mesh, the process is not as straightforward as it

might first appear.

A different approach based upon triangulating a cloud of points is also used quite fre-

quently. The basic idea is to consider a point for triangulation, and connect it to its neigh-

bors in a way that satisfies certain geometric constraints. If the existing local points do not

satisfy the geometric criteria, a point or points are locally added to satisfy the criteria. In

[5], an excellent summary of the successful implementations of the Delaunay criterion to

perform the triangulations is made. The Delaunay criterion is shown to have many impor-

tant implications regarding locality of neighbors, interpolation properties [88], smooth-

ness of the grid and is shown to satisfy certain geometric properties that are inherent in a

multitude of problems. In [5], important positivity properties are shown to result from

grids that satisfy the Delaunay criterion in two-dimensions, and Delaunay-like criteria in

three-dimensions for a linear Galerkin finite-element formulation of Laplace's equation.

Similar geometric constraints are found here for a cell-centered, finite-volume formula-

tion, but not in the context of triangular grids (Chapter HI). An example of a traditional

unstructured grid is shown in Figure 1.2. This grid was generated using a Delaunay-based

point insertion algorithm [39].



Figure 1.2 Example Unstructured Grid

A sibling approach to the advancing front method is the prismatic grid approach. In this

case, layers of cells are advanced from the body surfaces in a hyperbolic type of manner.

This generates prism-shaped cells near bodies that may be more suitable for viscous com-

putations. The control of the mesh smoothness can be achieved by constraints applied to

the resulting front shape, as in [57], or by using a more hyperbolic grid generation method

coupled with a Cartesian-cell based approach, as in [54], or by a more geometric manner,

as in [86].

Regardless of the approach, traditionally unstructured grids are gaining popularity, and

many useful results are being obtained. The sheer amount of researchers working in this

area has led to many impressive advances. There are a large number of very talented and

well-funded people working on this approach. This fact, coupled with the strong mathe-

matical background that is present on the finite-element side of the fence for unstructured

grids make this a contender that will be very difficult to beat.

All of these methods require the discretization of a surface mesh, and require the result-

ing volume grid to match the surface mesh where the volume cells are adjacent to the
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boundaries.Thismakesthesurfacediscretization the controlling factor for the grid resolu-

tion and quality near the body. For complicated geometries and flows, this brings the user

back into the grid generation process, discretizing the surface. If truly automated grid gen-

eration is desired, the user should only have to specify functional descriptions of the body

and allow the grid generation to proceed automatically.

1.5 The Cartesian, Cell-Based Approach

The Cartesian, cell-based approach presented here performs this important task and

generates a volume grid automatically when given the functional or discrete description of

multiple bodies and domains. In addition, due to the special data structure used to store the

grid and flow data, adaptive mesh refinement is a natural extension of the approach. This

enables the possibility of achieving grid converged solutions upon automatically gener-

ated grids, bringing the user as far out of the loop as possible.The use of Cartesian cells to

discretize a domain is not a new idea. Indeed, it is the simplest possible discretization for

domains which are square or rectangular. The novelty of the Cartesian-cell approach arises

from the application of Cartesian-cells to non-square domains. For non-simple geome-

tries, all Cartesian-based approaches must perform some type of a specialized procedure

on the boundaries to account for the non-alignment of the boundary with the cell geome-

try. The particular strategies of these special boundary procedures are dependent upon the

type of algorithm used on the interior of the domain, and are naturally dependent upon the

equation set(s) that are being solved. Typically, the simple geometry of the Cartesian cell

is used to help define the usually non-simple intersection tests with the body surfaces to

provide the geometric data needed by the boundary procedure. The approach taken here is

to create N-sided polygons where the Cartesian-cells straddle boundaries of the grid, and

perform flux balances on these conservation volumes. Figure 1.3 illustrates a simple, non-

adaptively refined, coarse Cartesian cell based grid on the same geometries as Figure 1.1

and Figure 1.2.
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Figure 1.3 Example Un-refined Cartesian grid.

In addition to the geometric flexibility afforded with unstructured meshes in general, and

the Cartesian approach in particular, is the ability to perform solution adaptive mesh

refinement. Solution-adaptive mesh refinement adds cells locally to regions where an

increased resolution is desired. Due to the particular data structure implemented in the

Cartesian-cell approach here, the local subdivision of cells is straightforward. Figure 1.4

shows an example of a solution-adapted grid about the same geometry as the preceding

figures.
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Figure 1.4 Example adaptively-refined Cartesian-ceU grid.

1.6 Review of Cartesian Approaches

There are a wide number of fluid-dynamic-related applications to which Cartesian-

based algorithms have been applied, and depending upon the simplicity or complexity of

the governing solution procedure, different approaches have resulted. To categorize the

past work in the Cartesian area, a strategy might be to group the approaches on a data-

structure format. That is, categorize the works as to whether the governing data structures

follow a structured-grid-like or an unstructured-, finite-element-like approach. The draw-

back to this data-structure based categorization is that it places too much emphasis on the

ingenuity of the progranuner, and not on the complexity or lack of complexity inherent in

the approach. Here, the past work in this area is categorized by the governing equations

being solved. The simplifications or complexities of the Cartesian approach are due to the

particular information needed in the boundary procedures, which is naturally dependent

upon the equations being solved, hence the rationale behind this categorization.

The Cartesian-based approach has been used quite successfully for the solution of the

full potential equation by a number of researchers. One of the first applications was by

Purvis and Burkhalter [62], where they used a finite-volume procedure to solve the full
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potentialequation,andtookadvantageof theflux formulationatcut-cellboundariesto

simphfy theboundaryprocedures.Thebackgroundmeshwasregular,andstoredin a sin-

gle army.Sincetheflux throughthebodyfaceis zeroby construction,theonly contribu-

tionsto thecell updatecamethroughtheexposedfacesof thecut cells.A moreefficient

relaxationstrategywasusedby WedanandSouthin [90],who useda line Gauss-Seidel

relaxation scheme instead of the point Gauss-Seidel as used in [62]. Neither of these

approaches used local refinement. A very successful apphcation of the Cartesian-based

approach for the full potential equation is from the landmark work by Young et.al. [91],

resulting in the TRANAIR code. There, a finite-element-based procedure is used to solve

the full potential equation. A hierarchical representation of the locally-refined, Cartesian

cells is stored in an octree data structure, and a GMRES preconditioning strategy is used to

accelerate convergence of the scheme. Since no body-conforming meshes need to be

defined, and the solution strategy is robust, it is claimed to be easy to use for the novice

user. This has resulted in a very useful engineering tool to analyze geometrically complex

configurations. As pointed out in [91 ], this gridding strategy, coupled with the finite-ele-

ment solution procedure, results in a common framework which can be used to solve a

variety of computational physics problems, ranging from acoustics and aerodynamics to

electro-magnetic radiation.

For transonic, weakly-shocked flows and unshocked flows, solution of the full potential

equation can result in excellent predictions of the flow field. But, when the shock strengths

are increased, or the flow is rotational, it is necessary to solve the complete Euler equa-

tions. Unsteady, adaptively-refined solutions of the Euler equations were made by Berger

and Ohger [15], Berger and Colella [11] and Quirk [63] for Cartesian geometries. These

calculations highlighted the excellent results that can be obtained for highly comphcated

shock hydrodynamic problems when care is take in performing the mesh refinement and

flux computations. The flexibihty and utility offered for non-Cartesian bodies that was

demonstrated for the full potential equation was first extended to the Euler equations by
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Clarke, Salas and Hassan [ 19], where non-refined, finite-volume solutions about multi-ele-

ment airfoils were calculated using the approach. Later, Morinishi [56] also applied a sim-

ilar approach, but did not perform adaptive mesh refinement. For adaptively-refined flows

about non-Cartesian geometries using the Cartesian-based approach, there is the work by

Berger and LeVeque [12][13][14], Pember et. al. [60], Epstein, et.al. [25]. Recently, the

work by Quirk [64] and Chiang et.al. [16] for unsteady, adaptively refined flows about

non-Cartesian geometries has shown the excellent flow-feature-capturing capability of the

Cartesian approach using upwind-based, finite-volume strategies. For the extremely diffi-

cult problem of unsteady flows about deforming and moving bodies, the upwind, finite-

volume variant of the Cartesian based approach is being investigated by Bayyuuk [9]. For

steady inviscid flows, adaptively-refined solutions using an upwinded finite-volume

approach are shown by DeZeeuw et.al, in [24][22] and [23] and by CoLder in [20]. The use

of state vector splitting for the Euler equations in [58] and [59] and the extension of the

state vector splitting concept to the Navier-Stokes equations in [30] and [31] make use of

Cartesian grids. The state-vector splitting ideas presented in [58] and [31] present multi-

dimensional flux functions based on gas kinetics ideas, but do not show the improved res-

olution of non-grid aligned discontuities or the improvement when compared to the stan-

dard, face-aligned upwind flux formula which is inherent with the premise of using the

multi-dimensional flux. The recent use of the Cartesian-based approach in three dimen-

sions by Melton et. al. in [53] and [52], using ideas for the cut cell generation borrowed

from computer aided design and computer graphics, shows promise by providing a com-

mon way of describing the geometry of the problem.

The only extensions of the Cartesian-cell based approach to the Navier-Stokes equa-

tions may be found in the Ph.D. thesis works by Quirk [63] with a finite-volume approach,

and by Gooch [31] using a state-vector splitting approach. The state-vector splitting

approach is not a conservative method, and as shown in [31], has serious monotonicity

problems near discontuities and on boundaries. The work in the finite-volume area by
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Quirk in [63] had its major emphasis upon unsteady, upwinded numerics, and concen-

trated upon obtaining high quality unsteady shock hydrodynamic solutions. There, the

extension to the Navier-Stokes equations was brief, and demonstrated for only a few sim-

ple test cases. The work performed here carefully extends the finite-volume formulation of

the Cartesian cell based approach to solving the Navier-Stokes equations, giving a more

complete analysis of the approach and demonstrations of its capabilities.

1.7 Scope of the Thesis

This thesis first addresses implementing the Cartesian-cell approach to solve the Euler

equations. Since the proper treatment of the convective terms is essential before the vis-

cous terms can be addressed, Chapter II illustrates the Cartesian-cell approach for solving

the Euler equations. In this chapter the approach is first validated against some well-

known transonic airfoil flows. Then, the accuracy of the approach is carefully assessed by

using an exact solution of the Euler equations to perform a grid convergence study. The

results from uniform and adaptive mesh refinement are compared to uniform refinement of

a structured grid solver using a similar treatment of the convective terms. The benefits of

adaptive mesh refinement are highlighted by performing a grid-convergence study on a

very non-smooth flow; the supersonic flow through a mixed-compression inlet.

Next, in Chapter HI, a collection of viscous numerical flux functions are analyzed to

see which, if any, are good candidates to use with the Cartesian-cell approach. The flux

formulae are analyzed upon representative grids by using them to construct finite-volume

solutions to Laplace's equation, which is a model equation for the viscous terms of the full

Navier-Stokes equations. Local Taylor-series expansions are then found, and the accuracy

and positivity of the resulting stencils are examined. Six schemes are critically analyzed,

of which two appear to represent the best choices available.
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In Chapter IV these two flux formulae are used to compute adaptively-refined solutions

of the Navier-Stokes equations for a series of well-known flows. The results from the two

different flux formulations are compared to each other and to either accepted computa-

tional results, experiment or theory. The most robust of these flux functions is used to

compute the flow through a geometrically complicated internal flow.

For flows at high Reynolds numbers, both an altered grid-generation procedure and a

different formulation of the viscous terms are shown to be necessary. A grid-generation

procedure based on body-aligned cell cutting coupled with a viscous stencH-construction

procedure based on quadratic programming is presented in Chapter V.



CHAPTER II

Solution of the Euler Equations Using a

Cartesian, Cell-Based Approach

2.1 Preliminaries

The primary effort of this thesis is the development of a Cartesian, cell-based algorithm

to solve the compressible Navier-Stokes equations. Since the convective terms contain

many important non-linearities, and since a proper discretization of them is essential,

effort is first spent creating an accurate solver for the Euler equations.

Finite-volume algorithms are well developed for structured grids, but with the

increased geometric flexibility afforded by unstructured grids, emphasis has recently been

refocused on improving the state of the art of flow solvers for unstructured grids. For

structured grids, the conservation volumes are described by hexahedra/quadrilaterals

while traditional, unstructured grids use tetrahedraYtriangular volumes. In both of these

cases, obtaining cell to cell connectivity and cell geometry is simplified since the number

of faces/edges for all cells is the same. This simplification in connectivity and geometry

also simplifies the flow solver, since there are always a fixed number of geometric entities

to be operated upon. For instance, a three-dimensional structured grid always will have six

face neighbors to a cell, accessed by incrementing and decrementing local array indices. A

traditional, two-dimensional unstructured grid will always have three neighbors on its

faces, and always have the cell geometry be described by three vertices. This geometric/

connective simplification comes at a cost, though. The complexity and level of effort is

now switched to the grid generation. The task of grid generation about arbitrarily compli-

cated geometries is a formidable and highly manpower intensive task. It is not uncommon

that an order of magnitude more time is spent gridding up the volume grid for a calcula-

tion about a complicated geometry than is actually spent computing the flow field. The

15
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approach presented here tries to overcome this difficulty by taking the user out of the grid

generation loop as much as possible, and letting the complexity be switched back to the

flow solver. This switch of emphasis now means that more innovative solution algorithms

are needed, since many of the niceties afforded by the simpler grid structures are no longer

available.

For complicated geometries, unstructured grids are much easier to generate than struc-

tured grids. Typically, a surface mesh is specified and the volume grid is generated in an

unstructured manner by generating a cloud of points in the domain, which are then trian-

gulated, or by, say, an advancing front method, where points are added along a "front"

which is advanced from the boundaries to the interior of the domain. Both approaches are

based upon a specified surface discretization which is then closely coupled to the volume-

grid generation by requiting the specified faces on the boundary surfaces to be faces of

cells in the volume grid. In the approach considered here, the volume grid and surface

description are not strongly coupled in this manner. The computational boundaries are

described functionally, and are "cut" out of the automatically generated, Cartesian-cell

based volume grid, yielding N-sided polygons near the boundaries.The ability to create

the volume grid automatically and cut cells gives the Cartesian-cell approach its utility,

but adds some complexity to the resulting computer code. Since the cell geometry and

hence the cell-to-cell connectivity for all cells is not known apriori, a unique data structure

is needed to describe the conservation volumes. Indeed, it is this complication that sets the

approach apart from most of the traditional unstructured grid approaches that are prevalent

today.

In this work, the grid is generated recursively from a single cell, and during the creation

of the grid, the hierarchical relation between newly created cells and their parents is stored

in a binary-tree data structure. The cut ceils, which are the background Cartesian cells cut

into N-sided polygons, are created automatically using many concepts borrowed from

computer graphics applications, and since they are hierarchically related to their Carte-
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sian-ceUparents,theyarealsostoredin thetree.Thisprocedureof cell cuttingis asubject

unto itself,andits robustnessis absolutelycrucial for theutility of this approach.For clar-

ity, thecell-cuttingproceduresaredescribedin detailin AppendixA: althoughnot pre-

sentedhere,their importancecannotbeoverstated.

Thischapterfirst outlinesthedatastructuresimplementedandtheresultingalgorithms

usedto obtaininformationfrom them.Then,anupwind,cell-centered,finite-volume

approachis describedin detailanddemonstratedandbenchmarkedfor asetof well known

inviscid testcases.Finally,theaccuracyof theCartesian-cellapproachis assessedby per-

forminga grid-refinementstudyfor ananalyticalsolutionto theEulerequations,andis

comparedto theresultsobtainedfrom a standard,structured-gridapproach.

2.2 Some Comments on Grids/Data Structures

Unlike structured flow solvers, where grid connectivity is implicit to the algorithm,

unstructured solvers require connectivity and geometric data to be supplied in a more

explicit manner. The amount of data explicitly stored and the amount that can be found

implicitly by interrogating the stored data structures is very important from a usability and

efficiency standpoint. Specifically, it determines the way actions axe performed on the data

stored, and ultimately limits the type of algorithms that can be employed. This issue is not

as important for structured grids, where cell connectivity and grid data are easily obtained

because the cell and flow data are stored logically in two and three-dimensional arrays:

connectivity is implicitly found by incrementing/decrementing indices.

For traditional unstructured grids, connectivity is needed that allows cells to know cell-

to-cell, cell-to-edge and cell-to-vertex connectivity. A common way that this is done is by

storing cells and vertices in long, one-dimensional arrays (vectors) and storing the cell-to-

cell, cell-to-vertex, vertex-to-edge connectivity in each cell or at each vertex as references

to the indices of these long arrays[61]. This indirection is something that all unstructured
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solversneed, and how this indirection is handled delineates the resulting data structures.

Since these lists axe data structures that are global entities to the code, a local change in

the grid, by say, cell refinement, is felt globally by the data structure. A division of a cell

located in the beginning part of the list will change the indexed locations of all cells fol-

lowing it in the list. Maintaining this global structure through these local changes can be

difficult. Perhaps more importantly, domain decomposition is not readily achieved, since

the grid is stored in an essentially uni-dimensional structure. Domain decomposition can

prove to be crucial for applying and developing algorithms for parallel architectures, and

is not readily obtained from traditional unstructured grid data structures.

2.3 A Binary-Tree Data Structure

In the approach presented here, the grid and flow data are stored and accessed through

the use of a hierarchical data structure: a binary data tree. The binary tree is really a logical

geometric abstraction that has computational analogs and, as a result, has a natural domain

decomposition. As is shown in Figure 2.5, the tree is grown through the development of

the grid by cell division. The grid typically begins with a single mother, or toot cell, and

grows by a recursive subdivision of each cell into its children. Each child is geometrically

contained within the boundaries of the parent cell, and is located logically below the par-

ent cell in the tree. Figure 2.5 illustrates this concept for the subdivision of a single cell,

cell A, isotropically into 4 cells, cells D, E, F and G. The cell division occurs by first split-

ting the parent cell in x, and then the two children in y. In this figure, cells B and C are the

children of cell A, and cells D and E and cells F and G are the children of, respectively,

cells B and C. Arbitrary subdivisions of the cells are allowed during the process, only

requiring that the newly created cells be non-overlapping polygons that fill the space occu-

pied by the parent cell. To take advantage of the smooth grid that can be achieved, the root

cell is taken to be a square Cartesian cell of unit aspect ratio, and cell division is obtained

by isotropically splitting each cell into four, equal area children. Since N-sided cut cells
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are obtained by "cutting" them out of their background, Cartesian cell, they are always

logically locatable in the tree.

D E F G

A

rBIIcI
E G

D F

Figure 2.1 Illustration of Binary Tree

Before anything more can be said about using this type of data structure in a flow solver

or grid generator, it is necessary to bring out some important nomenclature that is used to

refer to the tree. A node is a location in the tree where a logical branching occurs. A leaf is

a node of the tree located at the bottom of the tree, and therefore has no children, while the

root of the tree is the location where the tree begins. More specifically, a root is a node that

has no parent, and has only children, while a leaf is a node that has no children, and only

has a parent. Figure 2.6 shows this for a simple tree. Since the grid generation results in

the desired grid by spawning the whole tree, flow calculations are carried out on the cells

represented by the tree leaves. Important information can be stored at the interior nodes of

the tree. An example, not used here though, would be the storing of the information

needed to perform the restriction and prolongation operators for multi-grid, as in [24].
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Figure 2.2 Illustration of Root, Nodes and Leaves of a Tree

Regardless of the type of cell division (by isotropic division of a logically square cell or

an anisotropic splitting of an N-sided polygon), the tree data structure contains important

logical information that can be used to obtain cell connectivity and to visit all cells in a

logical manner. The tree is replicated in code by each cell having a pointer to its parent and

a pointer to each of its two children. Each node of the tree has a separate location in mem-

ory which contains data in itself and pointers to other data structures as well. It should be

noted here that the entire grid generator and flow solver are written in ANSI standard C:

All pointers actually refer to a location in memory reserved for a particular data structure

and data type and do not refer to a type of indicial notation, as in FORTRAN. The tree is

an assemblage of nodal data structures where each node has a pointer to its parent and its

two children. In addition, each tree node has pointers to flow data structures and, for cut

cells, pointers to a structure that contains the geometric data needed to describe the cell.

Flow data structures are allocated only for leaves of the tree. Cut cells are described by a

local linked list of pointers to a globally-maintained list of vertices, while Cartesian cell

geometry is described completely by centroid location and cell size. Since the number of

cut cells will be small, storing this list of vertices does not create a significant amount of
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memory overhead. Carrying around pointers to auxiliary data structures is inexpensive,

since if the auxiliary data structure is not needed, memory is not allocated for it, and the

only extra space taken is a pointer in the calling data structure.

For the binary-tree data structure considered here, there are a few simple operations

that are performed upon the tree: visiting the tree; inferring face-to-cell connectivity;

inferring vertex-to-cell connectivity; tree spawning and tree pruning. The following sub-

sections illustrate these basic operations.

2.3.1 Visiting the Tree

Storing the tree in the manner described above provides a logically recursive means to

visit the tree resulting in a modular approach to programming the solver. In addition, since

important geometric data are inherently stored in the hierarchy of the tree, the tree also

provides a logical means of obtaining cell-to-ceil connectivity. There are only two types of

cells that exist in the grid: flow cells and no-flow cells. Flow cells are Cartesian cells and

cut ceils that are located logically in the computational domain and are ceils upon which

flux balances are performed. No-flow cells are cells that are exterior to the domain, and are

not considered for computation. Regardless, all cells are located at the leaves of the tree

(they have no children). By using a recursive technique, all cells can be visited using a

depth-first recursion as is shown by the following pseudo code:

function Visit_Tree_to_Leaf(TREE NODE Node)

if(this is a leaf of the tree)

if(this is a flow_cell) perform action upon tree leaf

return

end_if

Visit_Tree to Leaf(Node->LE, b'T_CHILD)

Visit_Tree to Leaf(NOde->RIGHT_CHILD)

return

As can be seen, invocation of this routine visits all nodes located below Node in the
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tree.All leavesof thetreearevisited by invoking this routine at the root node of the tree,

and when invoked at a branch of the tree, all leaves on that branch are visited. Since all

cells below Node are geometrically contained within its boundaries, this allows a simple

means of decomposing the flow domain and visiting cells within each decomposition.

Although no special use is made of this trait, it should have direct implications on a paral-

lel implementation of the solver. Figure 2.7 shows the order of visitation using this depth

first recursion for a small sub-branch of a tree. The visitation is performed by invoking the

function represented in the pseudo-code shown in Figure 2.3, where the action at the

leaves is simply to print out the "name" of the leaf.

sit_Tree, to Leaf(Root)-Root

c b

e h

n o

Output from visitation is:
ijfklmgno

Figure 2.3 Illustration of Depth-First Recursion upon a Sample Tree by invoking
Visit_Tree to Leaf(Root)
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2.3.2 Inferring Connectivity From the Tree: Order-One Neighbors

Cell-face and vertex neighbors are needed to perform flux computations, gradient

reconstruction and a plethora of other important functions. Cell-face neighbors are defined

as cells that share a face with the cell in question. Since the tree inherently contains the

geometric hierarchy of the grid, it can be used to obtain cell-face neighbors. Cell-face

neighbors are found by logically traversing the tree in a search direction determined by the

outward pointing normal to the face. The tree is traversed upwards until one or both of the

children below a candidate node are in the search direction. Then it is searched downward

through all branches of the tree that are in the search direction and have a face that is coin-

cident with the cell face to which face neighbors are needed. It is useful to note that this

search procedure applies to any shape of cells, with arbitrary numbers of neighbors along

an edge. If the cell creation satisfies the requirement of all new cells being geometric sub-

sets of the parent ceil, all neighbors can be found with this search procedure. If during the

downward phase of the search, a ceil is a leaf, and it is a flow cell, and it has a face match

to the candidate face, it is added to the list of ceil-face neighbors.

The concept of this particular tree-searching algorithm is best described by a simple

example. Figure 2.8 shows the sub-tree and the upward and downward search phases for a

sample grid. The East-face neighbors to cell C are desired, so that the search direction is as

indicated in Figure 2.8. The upward search phase begins at node C and terminates at the

tree sub-node S. The downward search phase begins here, and recursively searches down

the tree, adding the matched neighbors to the list. The upward searching logic dictates that

the search procede up the tree until one or both of the children below the candidate cell are

in the search direction. The downward searching logic dictates recursion down the tree,

through branches whose children have faces in the search direction.When the downward

search reaches a leaf, if the leaf has a face that is geometrically contained within, is coinci-

dent to, or spans the search face, it is a cell-face neighbor. Although in the worst case one
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might need to search the entire tree, this is a rare happenstance, and for the entire mesh the

expected number of searches is much smaller.

C

EI
F

GJ

D E

A B

"-- Search--- S
Direction

A C B

East Cell-Face Neighbors to C Are:

DGH

D E F

G I J

Figure 2.4 Example cell-face neighbor search path in tree.

The search direction of the tree is found from the geometry of the face where the neigh-

bor is desired. Geometrically, the face is described by its outward pointing unit normal,

(h x, fly), the location of its midpoint, (X,nia, Ymia) and the face endpoints. A search

direction can be formed and candidate cells can be examined to see if they are in the

desired search direction. A vector, V c, is formed emanating from the face midpoint to the

candidate cell centroid. The sign of the dot product of this vector with the search direction

is examined, which indicates whether the candidate cell is in the search direction or not.

An illustration of the search direction is shown in Figure 2.9, where it is desired to find
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_k Ca_didat,

|

Cell

Search Direction
^

nFace

Vc = (f_cand -- Xmid) 1 d- (Ycand -- Ymid))

= VcOfi

Figure 2.5 Search Direction for Neighbor Finding

Vertex neighbors are found from a list-directed, recursive search of the already found

cell-face neighbors, since the vertex neighbors of a cell are face neighbors of the original

cell's face neighbors. Vertex neighbors are neighbors of a cell that only share a vertex with

the cell in question. The search procedure recursively visits the neighbors of the two faces

that share the candidate vertex, adding matched neighbors to a local list, finally terminat-

ing the search after the originating cell is visited. After the search is terminated, the local

list is examined, and cells that are already face neighbors of the originating cell are

deleted. This procedure is necessary since vertices of degrees greater than four can occur

when using the distance cutting grids to be investigated in Chapter IV.

2.3.3 Cell Refinement: Growing Tree Sub-Branches

One of the strong points of unstructured grids is the ability to perform adaptive mesh

refinement by local mesh enrichment. The ease in which this refinement is performed for

the Cartesian-mesh approach is afforded by the tree data structure. The use of the binary
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treeallowsrefinedcells to be added to the domain by simply creating new sub-branches

logically below the refined cell. Figure 2.10 illustrates this where a single cell in a sub-

branch is isotropicaUy refined into 4 cells. Use of the tree allows this local mesh refine-

ment to be maintained locally in the data structure; before refinement, cell b had no chil-

dren, and was considered to be a leaf. After refinement, it has a whole sub-branch of the

tree below it. Special routines to alter the connectivity of neighbors to the refined cell are

not needed: the connectivity is logically maintained by the tree.

a c

b d

ISOTROPIC

REFINE

a c

glh d
e f

g e f h

Figure 2.6 Cell Refinement via Tree Sub-Branch Growth

2.3.4 Cell Coarsening: Pruning the Tree

Cell coarsening may be needed in regions of the flow where there is an excess of reso-

lution. Cells are coarsened by merging cells that share a face, creating a larger cell from

their union. If this merging of cells is restricted always to lie in a sub-branch, this process

can be viewed as simply pruning the tree up a set level of branches. Figure 2.11 shows

this process where the cells, g and e and h and f are asked to coarsen, and form two larger
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cells from their union. As in the cell refinement, this change in the mesh topology is only

local in the grid and the data structure. The tree still maintains all connectivity in a logical

manner.

a c

g e f h
coarsen coarsen

a c

ef d

a c d

e

Figure 2.7 Illustration of Tree Pruning for Cell Coarsening

2.4 Solution of the Euler Equations Using a Cartesian, Cell-

Based Approach

The Euler equations axe solved using a cell-centered, finite-volume, upwinding

approach. A limited, linear reconstruction of cell averaged data is used to provide input to

a numerical flux function, yielding the flux through cell-to-cell interfaces. The numerical

fluxes are computed in an upwind fashion using an appropriate approximate Riemann

solver. These fluxes are then used to perform a flux balance upon the conservation volume,

which is then used to advance the conserved variables in time. The procedure follows

standard practice for a finite-volume scheme. The solution procedure can be broken up
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into three stages; reconstruction; flux construction; and evolution. Each of the three stages

is described in detail below.

2.4.1 Minimum-Energy Reconstruction

The cell primitive variables in each cell are reconstructed, in the spirit of MUSCL

interpolation [79], using a linear reconstruction procedure. The reconstruction used is

based upon the Minimum-Energy reconstruction presented by Barth and Frederickson in

[4]. The process of reconstruction to arbitrary degrees of accuracy using this approach is

presented in [4][5][6] and [20]; A similar interpretation is presented below.

Reconstruction can be viewed as being the discrete inverse of the cel/-averaging pro-

tess. Define the cell average of an arbitrary function, u, to be

1 _udA =An(U ) = (2.1)

A

The reconstruction solves the inverse of the cell-averaging process: find the expansion

about the cell centroid to K-th order, u k (x, y), using the cell-averaged data of the cell to

be reconstructed and the cell-averaged data of a set of support cells surrounding the cell.

The support cells are typically taken to be nearest neighbor cells (cells that are face and

vertex neighbors of the cell), but this restriction is not necessary. Indeed, to perform

higher-order reconstructions, it is may be necessary to include a larger support set.

By expanding u I¢ (x, y) in terms of zero-mean polynomials, conservation of the mean

of the object cell is ensured, resulting in the general expansion

uK (x, y) = _+ 20_Fy(x, y) (2.2)
J

The W. axe constructed so that their cell averages vanish. These zero-mean polynomials
J

are constructed from the set of polynomials

_. = xny m (2.3)
J
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V (n + m) < K. This means that the zero-mean polynomials are found from the cell aver-

ages of these base polynomials as

Vj = K2j-A,(_) (2.4)

For a linear reconstruction, the quadrature for the _ are already computed as a matter

of course; they are simply the cell centroid, (Y, _). For a higher order reconstruction, they

can be obtained during a preprocessing step, using a numerical quadrature. For a linear

expansion, this results in the expression

u I (x, y) = _ + u x (x - x,) + Uy (y - y) (2.5)

where the aj have been replaced with a more meaningful representation.

The Minimum-Energy reconstruction minimizes the Frobenius norm of the differences

between the cell averages of the reconstructed polynomial and the cell averages of the

support set. This, in essence, examines the quality of the reconstruction by taking its cell

average in the neighboring cells and minimizing the difference between this average and

the true cell average in the support cells. That is, minimize with respect to the oc.
J

Taking

where

2

S = ZO_n[An(UK-u)]

OS "

_ = 0 and solving for the aj results in the linear system
J

(2.6)

Lij _ = b i (2.7)

Lij = ZO)nAn (Wi)An (Wj) (2.8)

bi = Zf't)n (Un - U)An (_i) (2.9)

?1

For a given mesh, L 6 is dependent only upon the geometry, and not the solution. Hence, it

can be formed, inverted and pre-multiplied with the bi, yielding a summation only over

the support cells. This preprocessing step makes the reconstruction procedure efficient;

once a grid has been generated, it only requires a simple sum over the support cells to
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computethereconstruction.It should also be noted that this type of reconstruction does

not require any special ordering of points, and is K-exact in the sense that it reconstructs

polynomials of order K exactly. The o_, are introduced in (2.6) to allow a data-dependent

reconstruction, and, as is mentioned by Barth in [5], can be chosen to be functions of the

geometry and/or the solution, but for simplicity <on = 1.

Application of the Minimum-Energy reconstruction technique for a linear reconstruc-

tion yields the following form for the Lij and b i

L = " (2.10)

The inverse of L is found as

(2.11)

IILII= (X (_.-_):) (X (L-_):) - (_E(_.-_) (L-;))
n n n

(2.12)

LxlI   n '2n1= __ (2.13)

IlZll (,_ _./1 (y, _y) '_, (._ _/) 2
n

The inverse, computed in a preprocessing step, is used during the reconstruction to find

(2.14)
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which is computationally efficient, since the b i involve only a simple sum over the support

set.

2.4.2 Gradient-Limiting Procedure

The reconstruction of cell-averaged data shown above does not preclude the introduc-

tion of new extrema: there is no means to ensure that the reconstructed solution is bounded

by the data used to perform the reconstruction. To enforce this, the reconstruction is lim-

ited by evaluating the cell-averaged data of the support cells used and reducing the recon-

structed gradient to achieve monotonicity of the data. This will in turn guarantee

monotonicity of the solution if the numerical flux function is a positivity-preserving func-

tion (which for an upwind scheme is sufficiently implied by positivity of the dissipation

matrix), and provided that a proper choice is made for the time step. The concept of

restricting the local solution to be bounded by its immediate neighbors is based upon a dis-

crete interpretation of a local maximum principle, and is used to evaluate the stencils

obtained for a model equation of the Navier-Stokes equations, as will be shown in a subse-

quent chapter.

To ensure monotonicity of the reconstruction at cell interfaces, the reconstructtion is

required to be bounded by the data used to perform the reconstruction. Since the flux

quadrature will be performed at the cell interfaces, a less diffusive limiter could be formed

by evaluating the reconstructed function at these quadrature points. But, here the function

is evaluated at the extremities of the cells, which, for a linear reconstruction, will yield the

minimum and maximum variations of the reconstruction.The limiter presented here fol-

lows that by Barth and Jespersen [8]. Since a robust scheme is desired, at the slight

expense of a more diffusive operator, the entire gradient is limited with a single limiter _,

as
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u 1 = u+f_[Ux(X-X ) +Uy(y-y) ] (2.15)

In addition, since a set of reconstructions for the four primitive variables is limited,

= (19, u, v, P ) , the minimum value of the limiter over all of the individual primitives

is found, and applied to all the equations. That is, let qbj be the limiter found for the j-th

primitives reconstruction. A single limiter, _ = rain (¢_j) is found and applied to all

reconstructions as

U 1 = U + @ [U x (x -_') + Uy (y -_) ] (2.16)

The Oj are found by examining the cell averaged values of the support set, and the

unlimited values of the reconstruction at the vertices of the conservation volume. The min-

imum and maximum of the data used in the reconstruction for the j-th cell from the set of

N support cells are

u_ in = min(_j,_n) n = I,N (2.17)

u_aX= max(_y,_n) n = 1, N (2.18)

The limiting procedure requires the reconstruction at each vertex to be bounded by the

min and max values shown above. If u_ = u r (x i, yi) is the unlimited reconstruction

evaluated at the i-th vertex, then the limiter is formed by examining the sign of the differ-

ence between this value and the cell-centered value. If this sign is positive, the reconstruc-

tion is limited to be less than the maximum value, (2.17), while if the sign is negative, it is

limited to be greater than the minimum value, (2.18). If there is no variation, or it is

numerically negligible, then there is no need to limit. That is,
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i max - x
men 1, uj_._.._-=uj )_ if

ui-uj J

i rain -- \
uj -uj]

min 1, u-_-_-ui ) if

i if

Ui--uj>O

Ui--uj <O

Ui--uj=O

(2.19)

An exasperating consequence of limiting can be a phenomenon loosely referred to as

"limiter cycling". By necessity, the limiting must be performed in a non-linear fashion.

Limiter cycling is caused by this non-linearity, coupled with the non-smoothness of this

particular limiter, and its tendency to turn on due to random noise in smooth regions of the

flow. The effect of this phenomenon may be reduced by the use of limiter freezing. That is,

after the residual has dropped a set amount, or if the iteration count has reached a set frac-

tion of the total number of iterations, the limiter is "frozen"; it is not recomputed, instead

using the value computed at the stage when it was frozen. This procedure, although ad-

hoc, can help in situations where a limiter cycle has developed. This does imply that the

solution can no longer be guaranteed to be non-positive. In practice, though, this restric-

tion can give reasonable results. Although it is not guaranteed to eliminate the problem,

introduction of a smoother limiter, as in [84] or [1], could help with this phenomenon.

2.4.3 Numerical Flux Construction

When solving any integral conservation law using a finite-volume technique, it is nec-

essary to approximate the flux through the boundaries of the conservation volumes. By

first principles, a conservation law relates the volumetrically-averaged rate of change of a

conserved quantity in a conservation volume to the fluxes of this quantity through its faces

and the rate of their production in the volume. For the inviscid flow of a non-conducting,

compressible fluid, application of the concepts of conservation of mass, momentum and
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energyresultsin a setof integralrelations;theEulerequations.Writtenusingtensornota-

tion theconservationlaw is stated

_t_lqidV + §EijnjdSs= 0 (2.20)

wheren_dS is the differential surface area vector, and qi the vector of conserved quanti-

ties. In two dimensions, the conserved quantities are

qi = (P' pU, pV, pE )

and the Cartesian components of the flux tensor are written as

(2.21)

Eil = (pu, puZ+P, puv, pull) (2.22)

Ei2 = (pv, puv, pv 2 + P, pvH) (2.23)

Following standard notation, the Cartesian components of velocity along the x and y

axes are u and v, respectively. The definition of the fluid total enthalpy, H relates the con-

served quantities to the hydrostatic pressure, P as

t" (u z + vz) (uz + vz)

H = E+_, H = h(P,p)+ 2 ' E = e(P, 9) + 2 (2.24)

from which a calorically perfect equation of state closes the relation between (h, e) and

(P, p). Letting 7 be the ratio of the specific heat at constant pressure to that at constant

volume, the pressure is directly related to the conserved quantities as

1 (2
P = (_t-1) (q4-_l q2+q_)) (2.25)

The finite-volume method approximates the conservation laws in (2.20) over the

domain by evaluating individual conservation laws on non-overlapping control volumes
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thatspantheentiredomain.By constructingthefluxesthroughtheinterfacesof these con-

trol volumes, and letting these fluxes contribute equally to the cells that share the inter-

faces, the conservation laws are discretely satisfied locally by construction and globally by

the mutual cancellation of fluxes through the faces of the volumes when they are assem-

bled into the domain. It is because of this basic and very important property that the finite-

volume technique is as powerful as it is.

The conservation laws, specialized to individual control volumes in two dimensions

whose shapes are invariant in time and are described by arbitrary polygons, can be written

as

A-_- =- Z FAS
edges

(2.26)

where F is the flux through the i-th face of the polygon describing the conservation vol-

ume. For the Euler equations, with a unit (outward pointing) normal, h = (fix, fly) the

flux can be written as

F

PU c

_ucu + h_t

PUcV + hyP

PUcH

(2.27)

where u c = uh x + Vhy is the inner product of the velocity vector with the (outward) point-

ing unit normal to the faces (contravariant velocity) and vc = - hyU + hxv is the covariant

velocity.

Regardless of the form of the numerical flux, F in (2.26), the surface integral must be

performed numerically using some sort of quadrature. Since a linear reconstruction proce-

dure is used, which has a truncation error of second order, it is only expected to get a sec-
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ond-order scheme. Therefore, it is intuitively obvious, and defended numerically in [4],

that using a quadrature of higher order for the flux integral is unwarranted. So, here a sec-

ond-order Gaussian quadrature along the edges is used, which translates simply to evaluat-

ing the kernel of the integral (2.26) at the edge midpoints. From this, the semi-discrete

form of the Euler equations can be written as

where the residual, R is

_q
-- = R (2.28)
Ot

R= _1 ed_ges F('_mid)AS
(2.29)

It is a bit understated to say that the modeling of the true flux, (2.27), by a discrete

numerical flux has been the subject of much research. As a result of this concentration of

work, there are a multitude of ways to form the fluxes. The two most used numerical

fluxes are central differencing with explicitly-added (scalar) dissipation and uni-dimen-

sional upwind schemes. The choice that results in a numerical flux that closely mimics the

physics of the true flux would always appear to be the best. The choice made here is to use

a flux based upon the solution of a local Riemann problem, oriented normal to the face,

with initial states determined by the reconstructed data on the two sides of the cell inter-

face: an upwinded formulation based on Godunov's scheme. The cost of solving the Rie-

mann problem exactly, as in Godunov's scheme, might not be warranted for the

dynamically mild flows here, so an approximate Riemann solver is used instead.

For a given means of reconstructing the left and right states at the conservation volume

interfaces, it is the choice of the particular approximate Riemann solver that delineates the

upwind schemes in use today. Effort is currently underway to develop new upwind flux

formulations based on uni- and multi-dimensional flux functions, of which the uni-dimen-
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sionalschemesappearto bethemostrobust.In this thesis, three flux formulations are

used; Roe's flux difference splitting[68], van Leer's flux vector splitting[80] and Liou's

Advection Upstream Splitting Method [48]. ComputationaUy, it is a simple matter to

change flux functions by replacing a single routine that computes the flux given the left

and fight interface states.

2.4.3.1 Roe's Flux-Difference Splitting: FDS

Roe's flux-difference splitting solves an approximate Riemann problem at the cell

interface exactly. The left and fight states at the interface are connected by a path in phase

space that is composed of a set of discrete waves, with uniform states between. This then

provides a means of forming the flux at the intermediate state yielding the upwinded flux.

That is, if the flux is first linearized about the left state

_" ( UL, U R) = F ( U L) + AF (2.30)

and then the fight

F ( U L, UR) = F ( UR) - AF +

then sum these and divide by two, the numerical flux is obtained as

(2.31)

1
1 (F(UL) +F(UR) ) -2 (AF +_AF) (2.32)

The flux differences are written in terms of the upwinded flux Jacobians, formed at an

undetermined intermediate state, 0

^+

AF + = A AU, AF = fit AU (2.33)

Combining this into (2.32) yields the upwinded flux as

1 I tfitl(uR- u,)_" = -_ ( FL + FR) - _ (2.34)
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Thedissipationmatrix is formedata state that is found by noting that the flux is a

homogeneously quadratic function of a parameter vector which itself is linearly related to

the conserved variables. This allows one to find the intermediate state, and form the dissi-

pation matrix. In practice, the dissipation matrix is computed in terms of the eigenvalues

and eigenvectors of the flux Jacobian evaluated at the intermediate state, and the change in

the Riemann invariants about the intermediate state. That is, the flux is written

4
1 1 _^

= (FL+FR)- la,-IAv,R,-
i=I

The intermediate state is formed as

(2.35)

= 4_LPR

= Utt.O + UR ( 1 -- O)

¢ = vzco + v R ( 1 - co)

fir = HLo + HR(1 -co)

(2.36)

where

The eigenvalues, _'i, at the intermediate state are

(2.37)

. m

_c - a[

//. I

_c+a[

(2.38)

^

while the change in the characteristic variables about the intermediate state, A V i, are
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^

AV/=

-(Ap - _Au_)-

2a 2

_Avc

AP

Ap--_-
a

(Ap + _aAUc)

2_ 2

(2.39)

^

with A ( ) = ( ) R - ( ) t." The acoustic eigenvalues, _'1, 4 are modified to prevent

expansion shocks, yielding the &i as

^

_/2,3 = _'2,3

_1,4 kl, 4 -> 1_1, 4

^2

al'4= ___"1'4 +1_L1,4 _L1, 4 -<I_L1,

_L1, 4

(2.40)

where

_i = max (4 (_'i,R- _Li, L)' 0) (2.41)

The columns of R are the right eigenvectors of A and are formed at the intermediate state.

1 0 1 1

- n x& -ny_ _ _ + nxl

- ny_ n x& ¢ _ + ny_

(_2+¢2) f'/+Uc a
[/- Uc& Vc& 2

(2.42)

This numerical flux has been proven to be robust, can capture strong, cell-aligned shocks
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in one cell and, importantly, treats contact surfaces propedy, yielding low dissipation

across shear and boundary layers. The implementation of this flux for non-reacting, sin-

gle-component gases is relatively straightforward, but, for reacting or non-reacting flows

of multi-component gases the intermediate state is not unique, and is costly to compute

[47]. Despite its few shortcomings, this numerical flux has proven to be quite useful, and

is probably the most used upwind flux formula today.

2.4.3.2 Van Leer's Flux-Vector Splitting: FVS

The flux-vector splitting approach, pioneered by Van Leer, is based upon decomposing

the numerical flux into upwind- and downwind-propagating components which are

formed by the respective upwind states at the interface. That is

_" (UL, Ut¢) = F + (UL) + F" (UR) (2.43)

The upwinded fluxes are formed by splitting the mass flux into forward and backward

propagating components, giving rise to the name flux-vector splitting. As is shown in [80],

there are various symmetry properties required of the split fluxes in subsonic regions and

the requirement that the split fluxes smoothly join their unsplit fluxes at the sonic points.

To ensure stability and positivity of the flux, the eigenvalues of the split flux Jacobians

must have the proper signs, so that the eigenvalues of OF +/3q are strictly positive, while

the eigenvalues of OF/Oq are strictly negative. It is chosen to split the fluxes in subsonic

regions in terms of a polynomial in Mach number, of which the lowest order gives rise to

the well known splittings
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~+
F

_m [H-me(UcT-a) 2]

+ I_ nx (2.44)

The split mass flux and pressure are formed as polynomials in Mach number of the contra-

variant velocity, M c = Uc/a, as

Oa 2
= +_- (M c + 1) (2.45)

P_ = P (Mc+ 1)2(2:FMc) (2.46)
4 -

Different forms of the splittings can be found, by choosing different me. The original for-

mulation requires the bracketed terms in the energy flux be a perfect square in Mach num-

ber, but here m e = 0 is chosen.

The advantages of flux-vector splitting are many, of which simplicity and robustness

are its best virtues. The FVS approach is simple to implement, yields a smooth lineariza-

tion (which is useful for implicit formulations of upwind schemes), and provides a

straightforward means to extend the splitting to multi-component flows of real gases.

The source of robustness of the scheme is found by examining the difference in the

split fluxes, which, when linearized, yields the dissipation matrix. It can be seen that as the

Mach number approaches zero, the difference in split fluxes does not vanish, as in Roe's

scheme. This property gives FVS its robustness, but also gives excess diffusion across

grid-aligned shear and contact surfaces, where the transverse Mach numbers are low. It is

precisely this excess diffusion which has caused the scheme to fall out of favor, as it adds

too much diffusion in shear and boundary layers in a Navier-Stokes computation [83].

This is unfortunate, since the flux-vector splitting approach has been shown to be

robust, efficient and easy to implement. Attempts have been made to improve the original
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flux formula, yet stay within the philosophy of flux vector splitting, but it was shown that

even for a first order flux, a low-diffusion modification of the original flux was non-posi-

tive [21]. Work in the area of improving the original FVS formulation by some hybrid

scheme is important, and has led to the following new, and unproven method.

2.4.3.3 Liou's Advection Upstream Splitting Method: AUSM

This novel flux function combines the efficiency of flux-vector splitting with the accu-

racy of flux-difference splitting. As opposed to the original flux-vector splitting proposed

by van Leer, where the mass flux is split into upwinded contributions at cell interfaces, the

AUSM scheme constructs a velocity at the interface. Dependent upon the sign of this

velocity, the convected components of the flux vector are taken from the proper side of the

interface, hence the term Advection Upstream Splitting Method. The momentum flux

through the interface due to pressure is treated separately. The inviscid flux is split into

two contributions: convective and pressure

u pu + P1/2= q/2 p

LPnJL/

(2.47)

where L/R means that the quantities are chosen from the left or right, depending upon the

sign of the interface convection speed, u c I/2 "The interface convection speed is found by

splitting the Mach number as

Ucl/2 = aL/RM1/2

which leaves the split flux to be defined as

(2.48)
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= m pa nx
1/2[pav [ +Pl/2

pall|L� R _OYj

(2.49)

where

MI/2= _ ,+ fiR,
+

P1/2 = PL + P-R (2.50)

There are various ways to split the Mach number and pressure: the simplest are the split-

tings proposed by Van Leer, which are the lowest order polynomials that satisfy certain

continuity and positivity constraints.

M.r = +1 P (M+ 1)2 (2 :t:M) (2.51)-4 (M+ 1) 2, p_-t =

The final form of the flux formula may be written in a more standard way as

||pavll[P)tu_ |pavIVP_u_ 11- 2 [p)cl Iil

a pa 1__ n xg, = M1/21 + IM_/2I_ a + (p+ +p-)

|pay[
_paI-I]L paHJR ) pall|

(2.52)

This flux formula has been shown to have accuracy rivaling that of Roe's flux differ-

ence splitting, has a lower operation count, is straightforward to apply to gases of multi-

component species, and is not susceptible to the slow shock problem and carbuncle phe-

nomenon as exhibited by Roe's scheme. Although it has many desirable qualifies, it is

only now beginning to be used extensively: Some anomalies are showing up in unsteady

and steady calculations [10], prompting the schemes' author to improve it. This has only

very recently resulted in a new and improved scheme, AUSM+ [49]. Due to the recent cre-

ation of the AUSM+ scheme, it is not included in the calculations to follow.
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2.4.4 Evolution

For simplicity, the semi-discrete form of the equations, (2.29), are advanced in time

using a multi-stage scheme. A spatially-varying time step is used, and is indeed quite nec-

essary, since there is typically a many-order variation in cell size across the mesh due to

cell refinement and cutting. A generic multi-stage scheme is used to advance the solution

from the n-th to the (n+ 1)-th time level

q(0) = qn

q(m) = q(O) + _.mAtR (q (m - 1) ),

qn + 1 = q (mstages)

m = 1, mstages (2.53)

Unless otherwise noted, a three stage scheme is used with coefficients of

_'i = (0.18, 0.50, 1.0) and a Courant number of v = 1.0. This particular choice of num-

ber of stages and coefficients comes from [8], and in practice has proven to be best from

an efficiency standpoint. The specific values of the multi-stage coefficients are nearly the

same as those in [82], which were chosen to damp optimally a second-order upwind

scheme, and are used in [8] for upwinded, unstructured-grid computations.

2.4.5 Boundary Procedures

Boundary conditions are applied by specifying the fluxes at boundary faces according

to the type of boundary condition to be enforced. Slip boundary conditions are typically

applied by extrapolating the pressure to the face Gauss point using either a first- or sec-

ond-order reconstruction. Since the mass flux through the face is zero, the flux is then

Fslip = (0, nxPg, nyPg, O) T (2.54)

where Pg is the pressure evaluated at the Gauss point. Supersonic inflow fluxes are com-

pletely specified from the imposed flow conditions, while supersonic outflow fluxes are
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foundby extrapolationof theprimitivesfrom the interior, and then computing the flux

from them. For flows where the conditions are subsonic at the boundary faces, different

types of procedures are used, dependent upon the particular flow process.

For an airfoil calculation, the far-field boundaries are typically located over 250 chord

lengths away, so that the standard lifting far-field boundary procedure of the imposition of

a point vortex, located at the quarter chord of the airfoil, is unnecessary. There, it is suffi-

cient to use the approximate Riemann solver to compute the flux, given an extrapolated

Left state from the interior and a Right state set from the free stream conditions.

For internal-flow computations, at inflow boundaries it has been found best to use a

procedure where the flux at the interface is found by specifying total temperature, total

pressure and flow angle from the inflow conditions, and extrapolate a backwards propagat-

ing Riemann invariant, R'. Following the procedure outlined by Chima [17], where the

Riemann invariant based on the total velocity is

2a
R- = U-- (2.55)

Writing this invariant in terms of the total speed of sound, and solving for U, the speed is

found from the positive root of the resulting quadratic

J42 R- (7- 1) + ao ( ) -2R'2 (7- 1)

U = (2.56)
1)

From this, the sound speed is then found, yielding the pressure and temperature, while the

Cartesian velocity components are found from the specified flow angle. For internal flows,

the outflow-boundary fluxes are found by extrapolating the density and velocity compo-

nents to the Gauss point, and specifying the pressure, yielding the flux.
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2.5 Solution-Adaptive Mesh Refinement

The Cartesian, cell-based approach gains its strength primarily from two features; the

ability to compute flows about complicated geometries where the initial grid is obtained

automatically, and by the inherent ease in which adaptive mesh refinement can be per-

formed. Adaptive mesh refinement is an attempt to improve the quality of a solution on a

given grid by adding cells locally where an increased resolution is desired, and by possibly

removing cells where the current resolution is unnecessarily too high. This feature, cou-

pled with the automated means of mesh generation, attempts to yield grid-converged solu-

tions about geometrically-complicated domains with minimal user intervention. Adaptive

mesh refinement can also be viewed as a means of obtaining the most resolving power for

a given amount of resources. This matter of minimizing the amount of resources used is

crucial when performing three-dimensional simulations, but is not as important in two-

dimensions. Flows with large localized variations in geometric and flow-induced length

scales are amenable to adaptive mesh refinement, where resolution of all length scales

with a uniform mesh size would be prohibitive.

Each level of adaptive mesh refinement is comprised of two stages. In the first stage,

refinement criteria are constructed for all cells on the mesh, and then in the second stage,

cells are tagged for refinement or coarsening based on these criteria. After the mesh is

enriched, a new calculation is made, converging the solution to a steady, and hopefully

more accurate, solution. This process of refining the grid and converging the solution on

the new grid is repeated in an automated fashion, a set number of times, until a given level

of refinement is achieved. The choice of refinement criteria, and the means in which to

analyze these criteria over the mesh to determine which cells to refine, delineate the

schemes in use today.

The refinement criteria and grading procedure used here are based upon those pre-

sented in [23][24] and [22]. In [87] it is shown that any refinement criterion should be
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weightedwith a localcell size,sothatascellsget refinedto smallerandsmallersizes,they

areweightedlessandless.If the criterionwerenotweightedin this way,strongflow fea-

turessuchasshockwaves,whoselocationscanbedictatedby weakerfeaturesin theflow,

coulddominate,andadaptiverefinementmightnot improvethesolutionquality.Thecri-

teriausedherearebasedwholly uponthosepresentedby DeZeeuwandPowellin [22];

unlessotherwisenoted,no changesto theform of therefinementcriteriaor theselection

levelsaremade.

Therefinementandcoarseningof thecellsarebaseduponastatisticaldescriptionof

thecell-size-weightedvelocity divergenceandcurl.Thelocalvelocity divergenceis used

to detectcompressivephenomena,while thevelocity curl isusedto detectshear.Eachof

theseis weightedbythelocal cell sizesothatsmallercellscontributelessto theoverall

weighting.

x c = IV.ul/3t2 (2.57)

xR = IV× u[l 3/'z (2.58)

The local cell size is taken to be the square root of the cell area and the 3/2 power is cho-

sen to ensure that the criteria's importance diminishes with increasing refinement. These

adaptive criterion are examined over the whole mesh, and cells are determined to be

refined or coarsened according to the variance of each of these criteria about zero. That is,

let

N

(2.59)
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N

(2.60)

Cells are tagged for refinement or coarsening according to these criteria. Cells are refined

if

('c c > o c or xe > t_R) and I > Imi n (2.61)

and cells axe coarsened if

t_C t_R

x c < -_ and xR < 1"--0 (2.62)

The constants can be adjusted in (2.61) and (2.62), as is stated in [22], to tune the criteria

for different flow fields. In the work here, unless otherwise noted, the refinement criteria

used are exactly as presented here.

2.6 Validation of the Approach

The Cartesian, cell-based approach for solving the Euler equations is first validated

against some well known inviscid flow fields. Two test cases axe chosen from a collection

of test cases for inviscid flows [2]; transonic flow over the ubiquitous NACA 0012 and

transonic flow over the RAE 2822 airfoil. Both cases illustrate the automated grid genera-

tion and adaptive mesh-refinement of the Cartesian, cell-based approach, and provide con-

fidence in the overall method.

2.6.1 AGARD Test Case 2: NACA 0012, M** = 0.85, ¢x = 1°

This corresponds to the same geometry and free stream conditions as Test Case 02 in the

collection of inviscid flow test cases, AR-211 [2]. This flow contains a strong shock on the

upper and lower surfaces, and is a good test of the shock capturing ability of the flow
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solver,andby examiningthemesh,whethertheadaptivemesh-refinementprocedure

refinesaboutthe importantfeaturesof theflow.Threelevelsof adaptivemeshrefinement

aremadebeyondacoarse,basegrid.A close-upof thefinal, adaptedgrid andflow field

areshownin Figure2.12and Figure2.13.

Figure 2.8 Refinement Level 3 Adapted Grid

/

Figure 2.9 Refinement Level 3 Mach Number Contours: Min=O.003, Max=l.43,
Increment--O.05.
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The computed surface pressure coefficients and Mach numbers are compared with the

results tabulated in [2]. There, the tabulated results were computed on a 320 by 64 struc-

tured mesh, using a central differencing scheme with explicitly added dissipation, with

320 points on the airfoil surface. Figure 2.14 and Figure 2.15 compare the surface Mach

number and pressure coefficients for the adaptively-refined Cartesian, cell-based approach

and the structured grid results in the AGARD test case. The final, adapted grid has 13251

cells, which is approximately 64% as many as the structured grid. Although there is little

difference between the two cases, one can say that the adaptively-refined results show a

sharper shock wave, although both do a good job for this flow.
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Figure 2.10 Comparison of Surface Pressure Coefficient to AGARD Data
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Figure 2.11 Comparison of Surface Mach Number to AGARD Data
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2.6.2 AGARD Test Case 6: RAE 2822, M_ = 0.75, ¢_ = 3 °

This case corresponds to the same geometry and free-stream conditions as Test Case 06 in

the collection of inviscid flow test cases [2]. Adaptive mesh refinement is performed for

four levels beyond the base grid level. Figure 2.16 shows the final, adapted grid and Fig-

ure 2.17 shows the Mach number contours at the final refinement level.

Figure 2.12 RAE 2822 Level 4 Adapted Grid
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Figure2.13RAE 2822Level4 AdaptedMachNumberContours:Min=0.004,
Max=l.759, Increment=0.050

Thesolutioncompareswell to theresultstabulatedin [2], where the same contributors for

the AGARD Case 02 computed the solution on a structured grid of 320 by 64 cells, using

a central differencing scheme with explicitly added dissipation. The adaptively-refined

Cartesian-mesh approach captures the upper surface shock crisply, and gives overall

excellent results.
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The effect of adaptive mesh refinement upon the computed lift and drag of the airfoil is

shown in Figure 2.20. Here, the computed lift and drag coefficients are plotted against the

number of cells in the grid from the base grid level to the final, fourth level of adapted

mesh refinement.
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Figure 2.16 Grid Refinement of Lift and Drag Coefficients

As is seen in the figures, the computed lift and drag are approaching grid convergence, yet

have not appeared to be completely grid converged, even though the final grid level has

nearly 18000 cells. This smooth behavior of approaching a grid-converged solution comes

about due to the care taken in performing the calculation. The body is represented by a

series of cubic splines, so that by construction, the geometry is C 1at all of the control

points, except the trailing edge. It is necessary to use this geometric description, as

opposed to a linearly-faceted body, where a linear function would be used to provide

geometry between the geometric control points. If a linear description is used, grid refine-

ment will often resolve the discontinuous breaks on the body surface, especially in regions

of higher Mach number, such as near the suction peak on the airfoil. These geometric

breaks may be un-resolved at the lower grid refinement levels, only to appear as refine-

ment proceeds. Until all of the facets are uncovered, grid refinement can not be achieved.
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In additionto carein definingthebody,it isnecessaryto run alargenumberof iterations,

to convergetheflow in thetrailing edgeregionof theairfoil. Thetrailing edgeregionis

wherethecirculationaboutthebodyis set,anduntil the flow isresolvedwell andcon-

vergedwell there,grid convergencewill notbeachieved.

2.7 Accuracy Assessment of the Approach

Now that the Cartesian-cell-based approach has been demonstrated for a few airfoils, and

shown to give reasonable results, it is assessed more carefully to examine the accuracy of

the scheme. An exact solution of the Euler equations (Ringleb's flow) is used not only to

infer the order of error of the Cartesian-mesh approach but also to compare the magnitude

of the error directly to that obtained with a structured mesh approach. Care is taken in the

formulation and implementation of both schemes, so that a meaningful comparison

results.

2.7.1 A Hodograph Solution to the Euler Equations: Ringleb's Flow

Ringleb's flow is a hodograph solution to the Euler equations [2], and has been used to

assess the accuracy of other structured- and unstructured-mesh approaches [4] [29][33]. A

variety of flows can be attained, depending upon the choice of parameters used. The solu-

tion is parameterized in terms of the total velocity, q, and streamline constant, k as

J (2.63)1 2 1) 2
x(q,k) = _--_(k2 q

y(q,k) =+--_1 ll-(q)2-kpq (2.64)

! (T-l) 2
c = Jl 2 q (2.65)q
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P = c_,- 1 (2.66)

1 1 1 1 l+c

J = c + -- + log (2.67)3c 3 5c 5 2 (]--Z-_)

where the density, p, is made non-dimensional by its stagnation value and all speeds are

made non-dimensional by the stagnation sound speed. The flow angle 0 is related to the

streamline constant and total velocity by

0 = 2x - asin (q) (2.68)

The flow in the first quadrant is computed that is bounded by the streamlines k = 0.75

and k = 1.5. The outflow boundary is situated along the y = 0 line of symmetry and the

inflow boundary is along the iso-velocity line of q = 0.5. The resulting flow has a sub-

sonic inflow and a mixed supersonic/subsonic outflow. Figure 2.21 shows contours of the

Mach number of the flow field obtained with these parameters. As can be seen from the

figure, the flow can be visualized as a transonic, accelerating flow contained between two

curved streamlines.
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Outflow

Figure 2.17 Mach Contours, Ringleb's Flow

If one defines the discrete error for the i-th cell as

then the L
P

e i = [ffi--p_,act(._i,Y'i) l

norms of this error are

(2.69)

1

= (2.70)

First, an assessment of the order of accuracy and the magnitude of the error using the Car-

tesian-mesh approach is made. The order is inferred by evaluating the behavior of the

error norms with increasing mesh refinement, while the magnitude of the error is assessed

by comparing the error norms directly with those obtained from a structured mesh solver.

2.7.2 Structured Solver Formulation and Results

The structured-grid flow solver uses Fromm's differencing of the primitive variables on a

coordinate-by-coordinate basis. Roe's linearized Riemann solver is used to compute the

fluxes through the cell interfaces. Care is taken in the formulation of the boundary proce-
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duressothata directcomparisonof the two codes yields meaningful results. Slip bound-

ary conditions are applied by extrapolating the pressure to the Gauss points in a manner

consistent with the interior scheme. At the subsonic inflow, a boundary procedure based

upon constant total conditions and an extrapolated Riemann invariant (as in [17]) is used.

Roe's approximate Riemann solver is used at the mixed supersonic/subsonic outflow

boundary. The left and right states are supplied to the flux function from extrapolated and

exact conditions evaluated at the Gauss points.

The meshes used for the structured grid calculations have a family of coordinate lines

lying along the exact solution streamlines. The other coordinate-line family was generated

using a sinusoidal blending of the streamline and iso-velocity constants. A sample struc-

tured mesh is shown in Figure 2.22 with 400 cells. A sequence of successively finer

meshes of 10xl0, 20x20, 40x40 and 80x80 cells were used to compute Ringleb's flow,

upon which the solution error norms were computed. The norms are tabulated in Table I.

Table I Structured Grid Error Norms for Ringleb's Flow

Ncells L 1 L 2 Zoo

100 2.368e-03 2.796e-03 1.066e-02

400 4.517e-04 5.352e-04 2.700e-03

1600 1.157e-04 1.337e-04 6.918e-04

6400 3.050e-05 3.514e-05 1.745e-04
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Figure 2.18 Sample Structured Grid for Ringleb's Flow: 20 x 20 Grid

By plotting the logarithm of the norms against the logarithm of the characteristic ceil size,

1 / if-N, one can infer the order of the truncation error form the slope of the plot. A least-

squares curve fit of the data gives slopes of the L 1 , L 2 and Loo norms of 2.08, 2.09 and

1.97 respectively, indicating that the structured scheme is uniformly 2nd order accurate. It

should be noted that the mesh used here is quite beneficial: with a closer examination, one

can see that by virtue of the mesh generation, not only is one family of mesh lines aligned

exactly with the flow streamlines, but clustering is achieved near the place of minimum

radius of curvature of the left wall. Indeed, in a later section, it is shown that the adap-

tively- refined mesh is clustered in this region.

2.7.3 Cartesian-Mesh Results for Uniform Mesh Refinement

Next, the Cartesian-mesh approach is used to compute Ringleb's flow on a sequence of

successively finer uniform Cartesian meshes. The uniform meshes are generated by recur-

sively refining a set number of levels below the root of the tree, and then cutting the geom-

etry out of the mesh. The number of levels below the root cell characterizes the fineness of

the uniform meshes, which is referred to as the mesh base level, L 0. Figure 2.23 shows
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thecoarsestmesh,which is 4 levelsbelowtheroot cell, henceat ameshbaselevel of

L0 = 4.Uniformly refinedcalculationsweremadefor basegrid levelsof 4, 5,6 and7, of

whichtheerrornormsaretabulatedin TableII.

/f \
/

--<... \

\ \

\
I

Figure 2.19 Uniform Cartesian Mesh, L 0 = 4

Table II Uniformly Refined Error Norms for Cartesian-Mesh Approach, Ringleb's

Flow

N L 1 L 2 L**

118 5.345e-03 8.658e-03 4.497e-02

417 1.571e-03 2.554e-03 1.458e-02

1578 4.236e-04 7.394e-04 6.928e-03

6134 9.793e-05 1.983e-04 2.674e-03

A least-squares curve fit of the uniformly refined norm data yields slopes for the L 1' L2

and L norms of 2.02, 1.91 and 1.40, respectively. Using the two finest meshes one

obtains slopes for the L 1 , L 2 and L, norms of 2.16, 1.94 and 1.40, respectively. These

slopes indicate that the Cartesian-cell based scheme is globally 2nd order accurate and that

the local error is between first- and second-order. An analysis of the effect of the boundary
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cells upon the solution accuracy is estimated by computing error norms separately for the

boundary cells, and then computing the slopes as above. The computed slopes of the

boundary cell L1, L 2 and L** norms were 1.68, 1.49 and 1.40. Although the local error is

degraded by the irregularity in the mesh due to the cut cells/boundaries, the scheme

remains globally second-order accurate. It is precisely this behavior which is the saving

grace of the Cartesian approach.

2.7.4 Cartesian-Mesh Results for Adaptive Mesh Refinement

The effect of adaptive refinement is assessed next. Beginning at a base uniform mesh of

level L0 = 4, adaptation proceeds through 4 levels of refinement. The refinement is made

according to the rotationality and compressibility parameters described above, although

for this irrotational flow, the rotationality parameter is nearly zero and does not effect the

refinement topology. Figure 2.24 shows the adapted mesh that corresponds to a mesh

refinement of 2 levels below the base, uniform mesh.

,, I
Sq

I I[

Figure 2.20 Adaptively Refined Cartesian Mesh, AMR Level 2
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The adaptively refined norms are tabulated in Table III.

Table III Adaptively Refined Error Norms for the Cartesian-Mesh Approach,

Ringleb's Flow

N

118

Z 1

5.345e-03

Z 2

8.658e-03

Loo

4.497e-02

165 2.691e-03 3.995e-03 2.146e-02

337 1.310e-03 1.693e-03 6.658e-03

754 5.570e-04 7.093e-04 2.846e-03

1846 2.263e-04 3.056e-04 1.599e-03

2.7.5 Accuracy Assessment: Comparison and Discussion of Results

The error norms are compared with the characteristic cell size in Figure 2.20, Figure 2.26

and Figure 2.25 for the structured, uniformly and adaptively refined Cartesian calcula-

tions. As is shown in the figures, the L 1 and L 2 norms continue to behave in a 2nd order

accurate fashion throughout the refinement, and the L** norm is appreciably reduced in the

beginning stages of the refinement process.

These figures also indicate that the adaptive refinement would require approximately

twice the number of cells than the structured solver for a given error magnitude. What is

also indicated is that the adaptive mesh refinement requires approximately 2/3 the number

of cells for a given error norm than the uniformly refined (un-adapted) procedure.
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To determine if the refinement strategy could be improved, the parameters that determine

cell refinement and coarsening in (2.61) and (2.62) were adjusted. First, to see if the

length-scale weighting of the refinement criterion was not tuned properly, the length-scale

weight powers were changed to 1 and to 2, but the effect was negligible. In addition, the

cutoff parameters for coarsening and refining were adjusted. Cells were refined for refine-

ment parameters greater than 112 and 3/2 times the standard deviation about zero, with no

appreciable effect. Cells were coarsened for refinement parameters less than 1/4 and 1/2

the standard deviation about zero (the default level is 1/10), also to no effect. These results

indicate that the refinement procedure is tuned properly for this smooth flow, and that no

appreciable gains could be made with respect to the structured results.

The relatively poor performance of the Cartesian solver with respect to the structured

solver is best explained by the smoothness of the flow and by the flow alignment of the

structured grid. Ringleb's flow is a very smooth flow and has essentially a single length

scale; it is surmised that on the structured grid, even a very coarse grid captures enough of
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the flow field sothat refinementbeyondthis saturationwill not yield muchimprovement

overuniform refinement.In addition,thestructuredmeshusedcanbeviewedasbeingin

somesense"optimal"; notonly is onefamily of thecoordinatelinesexactlyalignedwith

thestreamlinesof theflow,butby virtueof themeshgeneration,themeshis denserin the

regionwherethegradientsarehigher.Indeed,the grid alignment with the solution stream-

lines can be very beneficial since the Riemann solver used is only one-dimensional.

2.7.6 Accuracy Assessment: Non-Smooth Flow

One of the great promises of adaptive mesh refinement is to achieve a high level of resolu-

tion and accuracy using a minimum of resources. But, as is shown in the preceding exam-

pie, for a flow with a single length scale, or one that is fairly uniform, it is hard to beat

uniform mesh refinement. The following example shows that for the proper type of flow

field, adaptive mesh refinement can give an appreciable gain in performance over uniform

mesh refinement. For this study, the supersonic flow through a stylized axi-symmetric

inlet is computed using the Cartesian-cell approach on a sequence of uniformly- and adap-

tively-refined meshes. The inlet studied is based upon the mixed compression inlet inves-

tigated in [34]. This inlet is designed to decelerate a M** = 2.5 flow through a series of

oblique shock waves which terminate at a normal shock wave in the diffuser. For the study

here, the free-stream Mach number is reduced to M** = 2.0 and the cowl is displaced

radially outward one-half cowl radius from the centerline. Extrapolation-type procedures

are applied at the exit boundaries, yielding a supersonic flow throughout the inlet. The

centerbody and inner cowl surface shapes are made using the curve fits supplied in [34],

while the outer cowl surface is stylized for this study. Uniformly-refined computations

were made for base grid levels L 0 = 6 through L 0 = 9. Adaptively-refined calculations

were made starting at a grid base level L0 = 6 and refining 5 levels. Figure 2.28 and Fig-

ure 2.29 show computed pressure contours and the resulting adapted grid corresponding to

three refinement levels below the base mesh. Grid convergence is assessed by comparing



67

thedragcoefficientsof theuniformly andadaptivelyrefinedcalculations,shownin Figure

2.30.

Figure 2.24 Adapted Grid: Axi-Symmetric Inlet, AMR Level 3

Figure 2.25 Adapted Grid: Pressure Contours, AMR Level 3
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Figure 2.26 Mesh Convergence of Drag Coefficients: Uniformly and Adaptively
Refined Grids

At this point, an accurate Euler solver based upon the Cartesian-mesh approach has been

developed and proven; effort now turns to investigating the efficacy of the Cartesian-mesh

approach for solving viscous flows.



CHAPTER III

An Accuracy and Positivity Analysis of

Existing Cell-Centered Viscous Flux

Formulae

The compressible Navier-Stokes equations are directly obtained in conservation-law

form from first principles. Applying the concepts of conservation to an arbitrary conserva-

tion volume gives the Navier-Stokes equations

_t _ qidV+_ EijfljdS = _ Gijf_jdS+ _ HidV (3.1)
Vol s s Vol

The inviscid flux tensor, Eij, is as defined in (2.20), and volumetric forces that may be act-

ing upon the fluid, such as gravitational or buoyancy forces, are accounted for in H i. The

viscous flux tensor G 0, contains the contribution of the forces acting upon the control vol-

ume boundaries to the momentum and energy state in the volume. The force per unit area

(stress) in the i-th direction on a face of the control volume whose normal is fij, is

described by the Cartesian stress tensor

G.. = - PS.. + x.. (3.2)
tj _j tj

The flux of momentum into the conservation volume from the random, kinetic motion

of the gas is the hydrostatic pressure, and is treated separately in (3.2), while the flux of

momentum due to the shear and dilitational deformation of the fluid is represented by the

shear stress tensor, "cij. Flows of air are considered here, where the assumption of a New-

tonian fluid is valid, so that the stress on the fluid elements is linearly related to the rate of

strain of the fluid. By assuming isotropy in the shear stress tensor and in the linear relation

between the stress and rate of strain, the shear stress tensor may be written as

69
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T,ij -" _t (Ui, j + Uj, i) "i"3._ijUk, k (3.3)

The constants, _t and k, are related by requiring the mean normal stress (1/3 of the trace

of (3.2)), to he only due to the hydrostatic pressure (Stokes' hypothesis), so that

2
3, = -_-u . The shear stress tensor is then written as

3-

2

'_ij = _ (Ui, j + Uj, i) -- "_[_ijUk, k (3.4)

In addition to the convection of energy into the control volume, shear-deformation

work on the control volume and heat conduction within the fluid is occurring. By assum-

ing the heat conduction to be modelled by Fourier's law, qi = -kT;_, the viscous flux ten-

sor may be written in two dimensions as

Glj = [0, Xxx, "_xy'

G2j = [0, "Cyx, "Cyy,

The shear stress tensor and heat flux vector are then

U'Cxx "4- V'_xy -- qx] r (3.5)

U'_y x 4r V'_yy -- qy] T (3.6)

_u 2 3u _v

Xxx = 2_tb- _ - _t (_ + _) (3.7)

_v

= rt(- + (3.8)

x = x (3.9)
yx xy

_v 2 bu _v

'_yy = 2_-- _(_--_-1- _-_)
(3.10)

o_T

qx = -k-_ (3.11)

_T

qy = -k_ (3.12)

In practice, the equations are made non-dimensional by a suitable reference state. Here,
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thereferenceconditionsaretakenas:

Length: loo

Density: Poo

Speed: a®

Pressure: p**a 2

Time: l**/a**

The constitutive relations assume a calorically perfect equation of state, and a laminar

viscosity based on Sutherland's law. The definition of the fluid Prandtl number is used to

find the thermal conductivity from the laminar viscosity and specific heat at constant pres-

sure.

3

Ek jIx = Ix0T+S, S = ll0K °, Ix0 = 1"45x10-6 (3.13)m --sec

Pr - IxCp Pr = 0.72 (3.14)
k '

Substitution of these reference conditions into (3.1) specialized to having no volumet-

ric forces, and a conservation volume whose shape is invariant in time, gives the form of

the compressible Navier-Stokes equations used here:

_qi 1 !GijhjdAA _ = -_ EijhjdA +
A

(3.15)

The functional form of the shear stress tensor (3.7) is unchanged and the heat fluxes use

the Prandtl number definition in (3.14), as
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IX 0T
q:' = Pr(T- 1) 0x (3.16)

Ix OT

qY = Pr(T- 1) 0y (3.17)

The Reynolds number in (3.15) is based upon the reference conditions which make the

equations non-dimensional as

p ,oa**l**
Re** - (3.18)

Ix**

The solution of the conservation law (3.15) follows that of all finite-volume

approaches: the surface integrals on the right hand side are replaced by a numerical

quadrature. Since the convective terms are expected to be second-order accurate, the vis-

cous flux terms are integrated to the same order using the same type of quadrature. This

entails evaluating the kernel of the integral at the midpoints of the cell to cell interfaces.

The shear stresses and heat fluxes are functions of the local thermodynamic state (to find

the laminar viscosity and thermal conductivity from the constitutive relations) and the

Cartesian gradient of the velocity vector and temperature field. Since the local state can be

found from the reconstructed solutions at the cell centroids, the essence of computing the

viscous fluxes is finding the gradients of the velocity vector and the temperature at the

midpoints of the cell edges.

First, an assessment will be made of existing viscous flux formulae that have been used

in a selection of structured and unstructured finite-volume schemes. This assessment will

be made using a model equation that represents the viscous terms of the Navier-Stokes

equations, and will investigate the accuracy and positivity of the existing schemes upon

mesh topologies that will regularly occur in a Cartesian-mesh calculation. From this

assessment, two schemes emerge as best choices for solving the Navier-Stokes equations

on unstructured meshes. The best scheme should maintain high accuracy as well as posi-
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tivity of theoperator,but for thepresentstateof affairs,thesetwo propertiesappearto be

in directcompetition.Theperformanceof thesetwo schemesis demonstratedfor aselec-

tion of testproblemsin chapterIV, while theanalyticalassessmentof thecandidate

schemesbeginshere.

3.1 An Analysis of Existing Viscous Flux Formulae for the

Navier-Stokes Equations

Here an assessment is made of some existing viscous flux formulae that are in use

today in structured and unstructured, cell-centered finite-volume Navier-Stokes solvers.

The assessment is made by analyzing the solution of Laplace's equation, since for an

incompressible viscous flow with constant laminar viscosity, the viscous terms in the

momentum equations are identically Laplace operators acting upon the velocity field. For

each of the viscous flux formulae, the accuracy is examined in the form of a local Taylor

series expansion about the cell centroid for three different grid types: uniform Cartesian,

East Face refined Cartesian and uni-directionally stretched Cartesian (see Figure 3.1, Fig-

ure 3.2 and Figure 3.3). Positivity properties of the operator are then found by examining

the coefficients of the cells used in the local Laplacian.

3.1.1 Model Grid Topologies and Formulae

The finite-volume formulae for the discrete Laplacians on the model grid topologies are

shown here. For the uniform Cartesian grid shown in Figure 3.1, the Laplace operator

reduces to

1

L(uo) = _ (Ux, E--Ux, W+Uy, N--Uy, S)
(3.19)

where Ux, E, Ux, W, Uy, N and Uy, S are the reconstructed gradients at the East, West, North
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Figure 3.1 Uniform Cartesian Grid: Nomenclature

For the East-face refined Cartesian grid, the operator is

NvW

SW

N

I/),, N

w 0

Uy, S

S

NE

SE

Figure 3.2 East-Face Refined Cartesian Grid: Nomenclature

L (Uo) = -_ (Ux, 1 + Ux, 2) - Ux, w + uy, N -- uy, S (3.20)

Figure 3.2 shows the topology, nomenclature for cell labeling and locations of the ux, 1

and Ux, 2"
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For theuni-directionallyrefinedgrid, theLaplaceoperatoris givenby

1
L (Uo) = -_ [Ux, E- Ux, W + ARo (uy, N-- Uy, S) ] (3.21)

The cells are uniformly stretched in the positive y-direction only, and non-unit aspect ratio

cells are allowed. The geometric stretching is specified by the ratio of successive cell

heights in the stretching direction, so that

AYN Ay o

AYo AYs

The difference in centroid heights is then

- [_ (3.22)

YN -- Y0 --

Y0 -- YS =

h(l+_)

2AR o

h(l +fl)
2_AR o

(3.23)

where the aspect ratio is defined as AR o = h/Ay o.

NW N NE

W 0 E

SW S SE

h

Aye,

AYo

AYs

Figure 3.3 Grid and Nomenclature for Uni-directionally Stretched Grid

The uni-directionally stretched grid is included in the analysis since it is a common

topology encountered in structured grid calculations, and its inclusion sheds light into the
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performance of the current viscous flux formulae in use today. Although the Cartesian-

mesh approach does not preclude the use of non-unit aspect ratio cells, none of the calcu-

lations performed here use them.

3.1.2 Tools Needed to Assess the Viscous Flux Formulae

To perform the analysis of the viscous flux formulae the schemes are assessed for solv-

ing a generic Laplacian of a scalar variable, u. The choice of this model equation is based

upon the form of the viscous terms of the Navier-Stokes equations. If it is assumed that the

fluid is incompressible with a constant laminar viscosity, the momentum equations may be

written in non-conservation form as

_u i Ix

P-_i" + uYui'y + P,i - Re** ui, tt (3.24)

From this it is seen that the Laplacian is representative of the viscous stress terms of the

Navier-Stokes equations.

There are many useful physical principles that are described by Laplace's equation, and

as a result of centuries of effort at solving it analytically, there are a variety of mathemati-

cal tools at hand. Indeed, the Cauchy-Riemann equations provide a framework for the

entire field of complex variables and conformal mappings, which by their very nature pro-

vide solutions to Laplace's equation for analytic functions in the complex plane. An

important principle obtained from complex analysis and applied here is found from the

Cauchy integral formula. This states that the value of an analytic function at a point can be

found from a contour integral around a closed path around that point. It is important to

stress the analyticity of the function, since the real and imaginary parts of an analytic func-

tion in the complex plane directly satisfy the Cauchy-Riernann equations. Specifically, this

leads to a maximum principle that is held by solutions to Laplace's equation, which states

that the maxima of the function are on the boundaries of the domain. Locally, this implies
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thatthevalueat apoint is boundedby thesolutionin theneighborhoodof thatpoint. If

this is interpretedonadiscretelevel,asin applyingafinite-differenceapproximationof

Laplace'sequation,it providesconditionsuponthecoefficientsusedin thestencilsothat

theapproximationwill satisfyadiscrete,localmaximumprinciple.If anN-point stencilis

considered,that is arrivedatby somemeansto solveLaplace'sequation,it canbewritten

as

N

V2u=L(u) = E _nUn = 0 (3.25)

n=0

where the support setused containsatleastthe nearestneighbors to u0.This can be

rewritten to solve for u 0 as

so that to
n

neighbors

N

u o = _, conun (3.26)
n=l

______n.A discrete maximum principle then states that u 0 is bounded by its
S o

rain (u I, u 2.... ) < u 0 < max (u 1, u 2.... ) (3.27)

A sufficient condition to satisfy (3.27) is to require all the con > 0. Therefore, by whatever

means a stencil is found as a Laplace operator, if all of the coefficients of the stencil are

positive, then the scheme discretely mimics an important physical property of the continu-

ous Laplacian: it satisfies a maximum principle.

In addition to the positivity of the stencil, the accuracy of the approximation is readily

obtained by applying a local Taylor series approximation to (3.25). Expanding the series to

K-th order about (x, y) 0' results in

K k N

"-" anq n I"1n (k_ra) !mt Oxk-mOym
k=Om=On=O

(3.28)
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where _,_= x n - x o and _n = Yn - Yo • Collecting like partial derivatives the expan-

sion may be written as

a,, a2u
°3u ('_L_Otnrln) N 2 3X2L(u) = (_txn) + (_.O_n_n)-_+ + n t-... (3.29)

n n n

A general set of conditions for the tx n can then be arrived at that must be met for the

discrete approximation of any linear partial differential equation. For a discrete Laplacian

to have a truncation error of second order, all of the following conditions must be met:

_a n = 0 (3.30)

__.o_n_n = 0 (3.31)

_a,11 n = 0 (3.32)

_.,Otn_2n = 2 (3.33)

___,otn_nrln = 0 (3.34)

'_(z 'q2n = 2 (3.35)

Y an_3n = 0 (3.36)
R

2
_a_ .tin = 0 (3.37)

ZO_n_n'q2n = 0 (3.38)

'__OCnrl3n = 0 (3.39)
/'1

The conditions set by equation (3.30) to (3.35) guarantee a consistent, first-order approxi-

mation, while the addition of the conditions set by (3.36) to (3.39) give a consistent sec-
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ond-order accurate scheme. That is, for a second-order accurate scheme, the Laplace

operator can be written as

L (u) = V 2 u + O (h 2)

and a first-order accurate stencil is then

(3.40)

L(u) = V2u+O(h)

A stencil is termed inconsistent if the Laplace operator is found to be

(3.41)

L (u) = kluxx+ k2uxy + k3Uyy + 0 (h) (3.42)

and either k 1 # 1 and/or k2 # 0 and/or k 3 _ 1. This can also be termed a zero-th order

approximation, since in the limit of zero mesh size, the modified equation does not con-

verge to the desired partial differential equation.

It is possible, from a poor means of creating the stencil, to obtain a stencil whose trun-

cation error that varies inversely with h. That is

1
L (u) = (O_lUx+ (_2Uy) _ d- (klUxxd" k2Uxy + k3Uyy ) + 0 (h) (3.43)

where tx 1 _ 0 and/or tx 2 _ 0. In this case, even grid convergence to the wrong equation

can never be achieved. This type of truncation error will be termed as dangerously incon-

sistent and should be avoided.

Positivity of the operator is found by requiring

a n >_0 V n > 0 (3.44)

As can be seen, once the weights of the stencil are found the accuracy and positivity can

be directly obtained. The positivity of the stencil is found by comparing the smallest

weight to the root mean square of all of the stencil weights. This is termed the positivity

parameter, (Xmi n and is defined as
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min ((z n, 0) (3.45)

O_min = [,_ O_2n

I

for a stencil with N members in its support set.

Here, the assessment is made of the candidate flux functions by using them to construct

finite-volume solutions to Laplaces's equation on the model grids. Following the standard

finite-volume approach, the solution to Laplace's equation is written as

V 2 udA = _ V u "hdS (3.46)
A S

For an arbitrary polygon, a second-order quadrature may be written as

V2U = l d_ges V u ° hASe (3.47)

As stated earlier, the essence of the problem is obtaining the gradient of a scalar quantity

at the midpoint of the cell edges. The schemes analyzed here use two different approaches

to find the gradients at the cell faces. The first, and most prevalent method is based upon

an application of the divergence theorem to a co-volume or polygon surrounding the face,

where the resulting surface integral is found using a second-order quadrature. The

schemes are differentiated by the particular co-volumes used and the way the data are

obtained at the vertices of the co-volume. Another approach is based upon reconstructing

a polynomial at the face, and differentiating it to obtain the gradients. The analysis of these

schemes begins here.

3.1.3 Green-Gauss Reconstruction: Centroidal Path

This procedure finds the gradients at the cell-to-cell interfaces by applying the diver-

gence theorem to a polygon formed by joining the centroids of ceils in a path about the



81

face.For auniform Cartesiangrid, thepathabouttheEastfaceis shownin Figure3.4.

NW

W

SW

r u ,e E

g" z

Figure 3.4 Centroidal Path Reconstruction: Path for East Face Reconstruction

For more arbitrary polygons and connectivity, the cells used in the reconstruction are

found by creating a positively oriented list of cells found from the face and vertex neigh-

bor connectivity. After this list is generated, the gradient is then found by a simple second-

order accurate quadrature

1 (Uj + Uj+ 1) nj (3.48)V u = -_. 2
J

where nj is the outward pointing normal of thej-th face of the positively oriented polygon

whose area is f_. This reconstruction procedure is based upon that outlined in [38].

Application of this reconstruction procedure results in a decoupled, or rotated Lapla-

cian, as is shown in Figure 3.5.

This stencil is marginally positive, consistent and second-order accurate and is classically

known as a "rotated" Laplacian. Because it has vanishing weights for cells that are face
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Figure 3.5 Centroidal Path StencH: Uniform Cartesian Grid

neighbors of the cell, it can lead to a checkerboard type of instability. This decoupling

arises since cells oriented along the front i+j=k are decoupled from those along fronts

described by i+j=k+l and i+j=k-1. This decoupling can lead to instability, and if somehow

stabilized by increased truncation error at boundaries, can yield a non-smooth solution.

For the East-refined model grid, the gradients at the interfaces are found following the

centroidal-path reconstruction procedure, which, after insertion into the flux balance for-

mulation, (3.20) gives the weights shown in Figure 3.1. As can be seen, this stench is

inconsistent and non-positive, with a Gtmi n = -0.2184...
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L(u)
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Figure 3.6 Centroidal Path Stencil: East Face Refined Grid

For the stretched grid, the situation gets even worse. The results of the truncation error

analysis are shown in Figure 3.7. For brevity, the functional forms of the stencil weights

are not presented.

1
L(u) -

h2

O_NW

O_W

t_SW

t_ N

tx o

a S

t_NE

CtE

O_SE

(l+_) 2

= Uxx + 4 _ Uyy "F

h((l_- 1) (I +I_) 3
. -2_AR_ 2 Uyyy +

(_2 1)

"_'_ Uxxy I +...

Figure 3.7 Cenlxoidal Path Stencil: Uni-directionally Stretched Cartesian

The inconsistency is independent of cell aspect ratio, but the truncation error is not: it var-

ies inversely with increasing aspect ratio. As is shown in the subsequent sections, this par-

ticular form of the inconsistency error is the same for an entire class of schemes: schemes
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thataretermedlinearitypreserving.For low stretchings,the inconsistencyerror is low,

and,asshownin [65], if thestretchingvarieslinearly with thegrid size,thescheme

approachesconsistencyin the limit of zeromeshsize.This stressestheimportanceof

meshsmoothnessfor structuredandunstructuredschemes.Figure3.8showsthevariation

of the inconsistencyerror, _,yy with 13- 1 where the inconsistency error is that obtained

for the stencil whose modified equation results in the form

L (u) = Uxx+ IZyyUyy+ ... (3.49)

1 0 2 ........ , ........ , .................. " ...... '

101

Eyy10 ° _J

10 -1
10 .3 10 .2 10 "_ 10 ° 101 102

13-1

Figure 3.8 Inconsistency Error for Linearity Preserving Schemes

It is illuminating to show the stencil on a grid one might encounter with a typical struc-

tured grid calculation. To do this, the aspect ratio and stretching are set to be AR o = 100

and I] = 1.2 and the weights in (3.47) are evaluated. The resulting stencil is shown in

Figure 3.9. The resulting stencil is very non-positive, with a positivity parameter of

&,nin = -1.262 ....
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Figure 3.9 Centroidal Path Stencil: Sample Stretching/Aspect Ratio

As is seen, the scheme is very non-positive on stretched meshes with a reasonable

aspect ratio, but is also non-positive on unstretched meshes with a non-unit aspect ratio,

where the positivity measure is

1 - ARo 2
= (3.50)

4 - 6ARo 2 + 5

On a mesh that has unit aspect ratio, but is stretched, the scheme decouples the East and

West neighbors, and can have a non-positive North neighbor, which gives the positivity

mPAtsure

1 - 13 (3.51)

Otrain _/3132 - 213 + 3

It is worth noting here that this scheme for the viscous flux functions was the first flux

formula implemented into the Cartesian solver, before any analysis was made, and from

the very outset it was difficult to get converged solutions. Typically, if a solution was con-

verged, it was "noisy" and non-monotone. This behavior prompted an analytical investiga-

tion of the scheme, and revealed the above decoupled behavior. This decoupling and non-
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positivity of neighbors in the Laplace stencil is a recurrent theme that shows up in many of

the schemes soon to be analyzed.

3.1.4 Green-Gauss Reconstruction: Existing Faces Co-Volume

This reconstruction procedure has been used successfully in [39] and [36] on triangular

unstructured grids, although the analysis here indicates a tendency to non-positive and

decoupled stencils. The basic idea behind this type of reconstruction is to form a co-vol-

ume about the face where the reconstructed gradient is needed by using the faces already

present in the mesh. To perform the path integration, the values at the face midpoints are

taken to be the mean of the two centroid values of the cells that share the face. Figure 3.10

shows the covolume created for reconstructing the gradient about the East face on the uni-

form Cartesian mesh.
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NE

E

SE

EE

Figure 3.10 Existing Faces Reconstruction Path: Uniform Cartesian Grid

The gradient is then calculated following the line quadrature shown in (3.48), where

for an example, the gradient ux, E in Figure 3.10 would be
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1 I(UE+UEE)
Ux, e = _ 2

(Uo+ U W ) 7
h + (-h) | (3.52)

2 d

For the uniform Cartesian grid, this reconstruction procedure completely decouples all

order-one neighbors although it is second order accurate and consistent with weights

shown in Figure 3.11.
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Figure 3.11 Existing Face Path Stencil: East Face Refined Cartesian Grid

On the East face refined Cartesian grid, the solution decouples in the y-direction, and

results in a non-positive stencil shown in Figure 3.12. The scheme is dangerously incon-

sistent, with the leading truncation error term Ux/(8Oh). With a truncation error of this

form, grid convergence could never be achieved, as successive refinement of the mesh will

never result in convergence of the modified equation resulting from the discrete Laplacian.

It is also very non-positive, with a positivity parameter of Ctmi n -- -0.863 ....
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Figure 3.12 Existing Face Path Stencil: East-Face Refined Grid

The poor behavior of this scheme is also evident on the stretched mesh. Figure 3.13

shows the stencil and modified equation that results from application of this reconstruction

procedure.

1

L (u) h2

I Ct_ l
!

0 CtNI 0 I

= Ux.x + EyyUyy +i i I .

I _ oi%1o I _ !4. I
, . EyyyUyyyh + ...

olo, 1o
I r

Figure 3.13 Existing Face Path Stencil: Uni-directionally Stretched Cartesian Grid

The stencil coefficients are shown below, as well as the important components of the mod-

ified equation.



89

(3.53)

ARo2 ( 1 - [3)

%¢ = (3 + _) (1 + 313) = -as
(3.54)

ARo26

ass - (1 +3_)
(3.55)

a 0 --

1 AR20 AR2[ 3

2 (3+6) (1+36)

The inconsistency error is large, where the term in Figure 3.13 is

(3.56)

(1 + _)4 (3 +2_+ 3_ 2)
e = (3.57)

YY 8[_ 3 (3 + 106 + 3_ 2)

and the first-order truncation error term is a large polynomial in the stretching parameter.

As can be seen, the stencil is decoupled completely in the x-direction, and gives non-posi-

tive coefficients in the North cell for non-unity stretchings.

Due to the tendency of the scheme to decouple order-one neighbors or to give a non-

positive scheme, it is not considered a good candidate scheme for solving the Navier-

Stokes equations and will not be analyzed further.

3.1.5 Green-Gauss Reconstruction: Diamond Path with Simple Vertex

Weighting

This reconstruction procedure is used in a variety of cell-centered, finite-volume com-

pressible flow solvers that have been used for a wide variety of calculations

([27] [32] [50] [72] [65] and many others). The reconstruction of the gradients at each face is

found by applying the divergence theorem to a four-sided polygon, or diamond path,
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whose vertices are defined by the two centroids of the cells sharing the face and the two

vertices subtending the face. Figure 3.14 shows the path for the interface at the refinement

boundary of the East Face refined grid.

VP SP.x

centroid_ _ centr_

vel :ex

lid

Figure 3.14 Diamond Path Reconstruction: Sample Path

The path is local, but does require some sort of an interpolation or averaging procedure to

provide data at the vertices of the face. The simple approach, taken in [50] and in [72] is to

average the data from the cells that share the vertex in question. Figure 3.15 shows this for

an un-refined Cartesian grid, where the gradient is desired at the North face.

NW

SW

N

0
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SE

1 (UN+ Uo + Use, + UNE)
U R ---- -_

1 (UN+ Uo + UNW+ USW)
UL =

Figure 3.15 Simple Averaging Procedure at Subtended Vertex

This approach naturally brings in the nearest neighbors of a cell, and attempts to keep the

stencil local by keeping the path local. In terms of weights, the cell averaging procedure
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canbewrittenas

N

Z tonUn

= I tJJo:'".=°"
Uvertex -- N

n=l

where N is the number of cells that share the vertex and (on = 1 for all n for this simple

averaging procedure.

Applying this reconstruction procedure to the uniform Cartesian grid results in a desir-

able Laplacian, namely the (-4,1,1,1,1) stencil shown in Figure 3.21. This comes about

due to a geometric cancellation of terms in the reconstruction procedure, and in fact, does

not bring into play the averaged data at the vertex. This can be realized by inspecting the

quadrature used in the reconstruction for, say, the East face. The integral around the dia-

mond path is broken up into four segments, shown below.

T

L R

n3 ",,,4 / n4

B
Figure 3.16 Sample Reconstruction, Diamond Path, Uniform Cartesian

Then, the reconstructed gradient, u x is simply
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1 (n1,_+n2,_) (n2,x+n3,,_)
Ux = _ ( 2 Ur+ 2 uL

(n3,x + n4,x) (n4,x + nl, x)

2 UB + 2 UR )

(3.59)

The area of the co-volume is £2. By symmetry, nl, x + n2, x = n3, x + n4, x = 0 , so that

there is no contribution of u r and u_ to the gradient. The resulting gradient is simply the

face difference, u x = (u R - ut.,)/h .

This geometric cancellation does not always occur, and when it does not, the method of

obtaining the data at the vertices of the face is more important. The stencil obtained using

the simple weighting procedure upon the East face refined grid is shown in Figure 3.17.
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Figure 3.17 Diamond Path Reconstruction, Simple Weighting: Stencil for Uniform
Grid

As is seen, the resulting stencil is not positive with Ctmi n = -0.110... and is dangerously

inconsistent, and therefore can never be grid converged.

Application of this reconstruction procedure on the uni-directionally stretched grid

results in gradients that are simply the face differences divided by the distance over which

the difference is made. The resulting stencil is
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Figure 3.18 Diamond Path Reconstruction with Simple Weighting: Stretched Grid

a 0 = -2 ( 1 + AR02)

2ARo 2

_N-- (1 +[_)

0IS = _N

(3.60)

It is important to note that this stencil comes about more from fortunate geometric can-

cellations than from a proper reconstruction procedure. This will be shown in more detail

in a later section.

3.1.6 Green-Ganss Reconstruction: Diamond Path Using a Linearity

Preserving Weighting Function

An obvious improvement to the previous scheme is to provide a more accurate means

of finding the data at the vertices of the faces.The reconstruction procedure here is identi-

cal to that shown in Section 3.1.5 but uses a linearity-preserving weighting to find the val-

ues at the vertices. This ensures that the reconstruction procedure using the path

integration will reconstruct linear functions exactly since the Green-Gauss reconstruction

is simply a weighted sum of two independently linear reconstruction procedures. The sin-
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gle,diamondpathcanbebrokenup into thepathabouttwo triangles,whichsharea com-

mon face.Sincethegradientin eachtriangleis knownexactly,then,by applicationof the

divergencetheorem,theline integralaboutthediamondpathwill simply bethearea-

weightedsumof the individualtrianglegradientsdividedby thetotalarea.Sinceeachsub-

trianglewill reconstructa linearfunctionexactlygivenlineardata,thereconstructedgra-

dientoverthediamondpath inheritsthis sameproperty.Theimprovedweightingused

hereensuresthatthedataprovidedto thereconstructionprocedureis linearly obtained

from thecentroiddata.This propertyof reconstructinglineargradientsexactlyis termed

linearitypreservation,andis shownlaterto imply animportantpropertyof theconstructed

Laplacian.

Thelinearity-preservingweightingfunctionusedhereis baseduponthelinearity-pre-

servingLaplacianderivedby HolmesandConnell in [35] andusedby Rauschet. al. in

[66] andby Knight in [41]. There,thesimilarity betweenalocalLaplaceoperatorandan

averagingprocedureisusedto find theweightsusedin theweightingfunction (3.58).The

procedureshownthereis baseduponperturbingtheweightsof thecellsfrom one,and

minimizing the sum of the squares of the perturbation. The perturbations are then found by

applying the method of Lagrange multipliers subject to the constraints that the constructed

Laplacian is zero for all linear data. Consider the vertex 0, surrounded by a set of vertices,

as in Figure 3.19.

Figure 3.19 Schematic of vertices surrounding object vertex for
linearity-preserving reconstruction.
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If theweightsare

minimizethecostfunction

o. = 1+ A¢o. (3.61)
! l

subject to the linearity constraints

C = _Ao_i 2 (3.62)

L (xo) = _.o i (x i -x o) = 0
i

L (Yo) = 2('0i (Yi-Yo) = 0
i

This results in the weights as

(3.63)

coi = 1 + _'x (xi - Xo) + Xy (Yi - Yo) (3.64)

_, ---- [xyRy- Iyye x

x IxxIyy- 12xy

where the various moments are

(3.65)

IxyR x - lxxgy
_. = (3.66)

ixx = _, (x i _ x° ) 2 (3.67)

lyy = 2 (Yi- Yo) 2 (3.68)

lxy = 2 (xi - Xo) (Yi- YO) (3.69)

= (xi- Xo) (3.70)

Ry = 2 (Yi - Yo) (3.71)

The data at the vertex (x, y) o are then found by requiring the Laplacian evaluated there
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bezero.In otherwords,

L(uo) = EfDi(ui-u0) = 0 (3.72)

i

from which the general form, (3.58), is found.

The same weights can be obtained in a different way, as is shown in Chapter V, where

the formulation gives rise to weights which preserve higher-order functions, and is termed

a consistency-preserving Laplacian. But, applying a higher-order weighting in the context

of supplying data to a reconstruction procedure that can at best preserve only linear data is

unnecessary.

Due to fortunate geometric cancellations, the stencils obtained on the uniform Carte-

sian and uni-directionally stretched Cartesian meshes are identical to those obtained using

the simple, unity weighting in Section 3.1.5. The stencil obtained on the East-Face refined

mesh is improved, although it is still inconsistent and not positive, with a comparatively

low _xmin = -0.115 .... The resulting stencil is

1
L(u) - *

171h 2

0 162

171 -733

0 162

-15

134 0

134 0

-15

1

1368 ( 1167Uxx + 1243Uyy) -

h

(469Uxxx + 279Uxy r) +..

Figure 3.20 Diamond Path Reconstruction Stencil using Linearity Preserving
Weighting Function
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3.1.7 Polynomial Reconstruction: K v = 1

This reconstruction procedure is similar to that presented by Mitchell and Walters in

[55], and reconstructs a linear function about the face using a set of support cells and a

Lagrange polynomial type of reconstruction upon this support set. This function is then

differentiated to obtain the gradients needed in the flux calculations. The set of support

cells is taken to be the minimum number needed to solve for the unknown coefficients in

the expansion. Since there is a large number of possible combinations of cells to make up

the support set, some criterion is needed to select them. The two cells that share the face

are always included in the support set, which simplifies matters for a linear reconstruction

since only three cells axe needed. As suggested in [55], the third cell can be found so that

the centroid of the co-volume (triangle) is closest to the face midpoint in addition to the

implied requirement that the resulting three points are not co-linear. For the linear expan-

sion, the reconstruction can be realized for any non-co-linear points, but which point is the

best choice in terms of quality of the reconstruction and its contribution to the cell stencil

does not motivate the selection criterion.

A general linear function is expanded about the face as

u (x, y) = C O+ Clx + C2Y (3.73)

where the function is evaluated at the centroids of the cells in the support set, so that the

gradients are found from the linear relation, AijC j = u i

The gradients are

Iixyilliil[ilx2 Y2 CI = u2

x 3 Y

(3.74)
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1
Ux = 2det(A) [ul (Y2-Y3) + u2 (Y3--Yl) + U3 (Yl--Y2)]

--1

Uy = 2det(A) [ul (x2 -x3) + uz (x3 -xl) + u3 (xl -x2) ]

2det (A ) = x2Y3 - x3Y 2+ x3Y I- xly 3+ xlY 2- x2Y t

(3.75)

It should be noted that det (A) is also the signed area of the triangle formed by connect-

ing the 3 points and that this reconstruction yields the exact gradients for linear functions,

hence is termed linearity preserving.

For the uniform Cartesian grid, the reconstruction is evaluated at each face, for all of

the support sets that allow an invertible system. For each face, there are a number of possi-

ble support sets that may be chosen, and of these support sets the ones that are invertible

yield the same gradient. This gradient is simply the divided face difference across the face,

(u R - u_.)/h. This is a step in the right direction, yielding the desired, standard Laplacian

weights shown in Figure 3.21.

L(u) = 1,
h 2

0

0

1

-4

0

1

0

h 2

V2U + -_ (Uxxxx + Uyyyy) + ...

Figure 3.21 Linear Reconstruction: Uniform Cartesian Mesh

For the East refined Cartesian grid, the divided face-difference gradients for the North,

South and West faces are found, regardless of the choice of the invertible support sets. For

the Ux, 1 and ux, 2 gradients, choosing the third point so that the triangle's centroid is clos-
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estto thefacemidpoint requiresthattheNorthEastandSouthEastpointsbeusedin the

gradientsUx, 1 and Ux, 2, respectively, which results in the stencil shown in Figure 3.22.

This stencil is non-positive with a positivity parameter of Ctmi n - -0.292 .... and is incon-

sistent.

1
t.(u) -

4h 2

0 4

4 -18

0 4

-1

4 0

4 0

-1

13 ,",2 •
_ -i-_V u-I-

h (_7 Uxxx- 1 +-_ 3Uxyy) ...

Figure 3.22 Linear Reconstruction: East-Face Refined Cartesian Mesh

This choice is not the best and the stencil is not unique; positive and non-positive sten-

cils can be realized if different choices are made for the third point when reconstructing

the gradients Ux, 1 and Ux, 2" By taking advantage of the symmetry of the first-order neigh-

bors of the 0, 1 and u cells (see Figure 3.2), one can see that there are a total of seven pos-

sible stencils that can be selected. Since the cells are symmetric about y=0, the choices of

the third point for the Ux, 1 reconstruction are cells t, b, 1, NW, N, SW and W (see Figure

3.2). The Ux, 2 stencil is then found by invoking symmetry in the data. Each of these

choices is analyzed; a summary of the stencils is shown in Table III.
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Table HI K v = 1 Stencils

Cell

Choice C1min

NE -0.29

t -1.0

b

NW

N

SW

W

-0.176

0

Deeoupled?

No

No

No

No

No

No

No

Ycs

Modified Equation

13 V2 h (7Uxxx + 13Uxyy ) + ...

3 h
Uxx + Uyy "1- -_ ( 11Uxx x + Uxyy ) +...

33 r_2
"_V U + h (Uxx x+ Uxyy ) +...

1 h

2--4(21Uxx + 25Uyy) + -_ (-7Uxxx + 3Uxyy) + ...

m h
1 (21Uxx+29Uyy) + _ (_7Uxxx+ 19Uxyy ) +...32

hV 2 u + -_ (- 7Uxxx + 3Uxyyy) + ...

21V2u_ h (7Uxxx + 13Uxyy ) +1-6 _ "'

h 2

Uyy + --_ Uyyyy + ...

As can be seen from examination of the table, none of the choices yields a consistent

Laplacian, and the stencil found from the geometrically-chosen support set is not the opti-

mum. The least inconsistent scheme is found from the choice of cell b to close the stencil,

as it has terms closer to unity pre-multiplying the Laplacian. The ambiguity of support set

choice can yield a very dangerous stencil, as is shown in the last entry in the table. For the

choice of the West cell to dose the support set, a stencil is found that is completely decou-

pied in x, and results in a modified equation that has no x component in the Laplacian: a

very dangerous choice, indeed. It is also important to note that none of the support sets
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yieldeda dangerouslyinconsistentstencil.

Theresultsfor theuni-directionallystretchedgrid arethesameasin theprevioussec-

tion: thegradientsobtainedaresimply thefacedifferencesdivided by thelengthover

which thedifferenceis taken.On thesamplemesh,theresultsareidenticalto thosein

Figure3.8.

3.1.8 Polynomial Reconstruction: K v = 2

This reconstruction procedure is similar to that presented above, but uses a quadratic

polynomial instead of a linear function. As before, once a suitable set of support ceils is

found, the reconstructed polynomial is differentiated, giving the gradients needed in the

flux formulae. The choice of cells to make up the support set is not obvious, and an

improper choice can yield an improper stencil, or a set where the gradients are not realiz-

able. The system to solve for the coefficients is found by requiring the expansion to be

equal to the values at the suppoxt set data points for

u (x, y) = C O+ ClX + C2Y + C3 x2 + C4xY + C5Y 2 (3.76)

2
Xl Yl Xl XlYl Y:

2
1 x 2 Y2 x2 x2Y2 Y2

2
1 x 3 Y3 x_ x3Y 3 Y3

1 x4 Y4 X_ x4Y 4 y_

2
1 x 5 Y5 x5 XsY5 Y5

1 x 6 Y6 X_ x6Y 6 Yl

c01

C,I

C21
i

C3l

C4l

C<I

U 1

U 2

U 3

U 4

_U 5

U 6

(3.77)

The gradients are found by differentiating (3.76) and then integrating over the interfaces.

A second-order quadrature is used, which for these linear gradients is exact, and entails
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evaluatingthegradientsatthefacemidpoints.Thegradientsarethen

u x = C 1 + 2C3x + C4Y

Uy -- C2 + C4x -I-2 C5Y

(3.78)

Things can be simplified somewhat, so that in practice a local coordinate system situated

at the face midpoint is used that is scaled by a local length scale, 5, where 5 is taken to be

the mean of the length scales of the two cells that share the face. That is,

_-- X--_}Xmid 1"1= Y--_Ymid _ = _(1 _L + A_R) (3.79)

The form of the Vandermonde type matrix, (3.77), is unchanged, but the entries are now in

terms of _ and rl. This results in a simplified gradient, which when evaluated at the face

midpoint gives

C 1

U x -- -_-

C2 (3.80)

Uy = -_-

For the uniform mesh, care is needed in forming the support sets about the faces: To

allow inversion of the matrix, a quadratic function in both x and y must be able to be

formed from the support set. For the uniform grid, this precludes the use of the face's nat-

ural neighbors. As an example, consider reconstructing the East face gradient on the uni-

form grid, using the face natural neighbors, as in Figure 3.23. This configuration of the

support set yields a singular matrix, (3.77), and requires the use of a modified support set.

This singular behavior can be seen to be caused by the lack of sufficient data in the x-

direction: only a linear function can be formed from two unique points. To overcome this

non-invertibility, a modified support set is used for the uniform mesh, shown in Figure

3.24. For the un-refined mesh, application of the modified support set gives the non-face

decoupled, standard second-order accurate Laplacian shown in Figure 3.21.
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Figure 3.23 Singular Support Set About East Face.
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Figure 3.24 Modified Support Set for East Face Reconstruction.

For the East-Face refined Cartesian grid, the North, South and West gradients are found

by applying a similar modified support set shown in Figure 3.24. The resulting gradients

are the standard gradients, as shown in (3.77). For the gradients at the refinement bound-

aries, a very large number of possible support sets can be formed, and, as in the linear

reconstruction, some good and some bad stencils can be constructed. There are a total of
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10-9.8.7
= 210 (3.81)

4_

combinationsthatmaybemadeif the set of cells to be taken from the union of the order

one neighbors of the two ceils sharing the face, and always start the list with the two ceils

that share the face. This large number of stencil choices can be reduced, if the connected

face neighbors of the object face are used, and the set closed with the remaining un-chosen

ceils. For the Ux, 1 reconstruction five cells are found: cells 0, N, NE, u and 1. A single cell

must be chosen to close the set. Looking at the order-one neighbors of the two cells gives

a choice of one cell from a set of seven. Some common-sense rules can be applied, as in

[55], by applying a locality principle: require the "geometric center" (interpreted to be the

centroid of the polygon formed by the support set) to be closest to the face midpoint.

Ordering in terms of this distance, the choices of the sixth cell are found to be SE, NW, S,

W, t, SW and b. The ux, 1 are then found by computing the gradient (3.78), and evaluating

it at the face midpoint, ux, 2 is found with the same procedure, choosing a set of cells for

its reconstruction in a symmetric fashion. Each choice gives a different stencil for the

Laplacian, and as in the linear reconstruction procedure, the geometrically chosen set does

not yield the best stencil. In fact, this stencil is decoupled from the East neighbors, and is

shown in Figure 3.25. Each of the choices to close the support set is analyzed, and shown

in Table m.
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= V2U+

Figure 3.25 Quadratic Reconstruction: SE Cell Choice

Table IV K_ = 2 Stencils

Cell
Choice

SE

NW

S

_ min Decoupled?

Yes

W

SW

b

0

-.0694

No

Ycs

No

No

No

No

Modified Equation

V2u + h_ + ...

h (-7 15Uxyy) + ...V 2 U + _ Uxx x +

V2u+hUxyy +
" 2 '

h (_7Uxx x+ 13Uxyy ) +
V2U+ _ "'"

h (5Uxxx + 63Uxyr ) +
V2U+ _ "'"

h (7Uxxx + 13Uxyy ) +V2U -- _ "'"

h (Uxx x+ 19Uxyy ) +V2U+ "]_ -'-
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The optimally-chosen stencil decouples and, of the seven stencils, two decouple and

one is non-positive. All of the stencils obtained are consistent and first-order accurate; the

best of all of the stencils found in this work. Attempts are made to improve the stencil

selection of this scheme, as is shown in a later section, but the tendency of the quadratic

reconstruction scheme to yield non-positive Laplacians does not result in a robust scheme

for solving the Navier-Stokes equations. This is unfortunate, since this scheme is shown

next to be better behaved on uni-directionally stretched meshes.

Application of the quadratic reconstruction procedure on the stretched mesh runs into

the same difficulties as encountered on the uniform Cartesian mesh. By choosing the obvi-

ous cells in the support set to reconstruct the gradient at a face, a singular system can

result. As before, by choosing a modified support set, as in Figure 3.24, unique gradients

can be found for a set of choices for the support set. Applying this modified support set,

the East and West gradients are the simple face difference values, while the North and

South gradients are gradients whose mmcation errors follow those of a quadratic function.

Substitution of these into the flux formula gives the Laplacian

L(u) = 1,
h 2

0

0

_N

(Zo

(ZS

0

0

V2u+

(- 1 + B 2)
h

6ARo_3
Igyyy -I- ...

Figure 3.26 Uni-directionaUy Stretched Grid: Stencil for Quadratic Reconstruction

The coefficients in the stencil are
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O_0 =

2 ( 1 + 2[_ + 4AR02_ + [$2)

(1 + _)2h2

8AR2_

_N--
(1 + _)3h2

O_S = I]O_N

(3.82)

This stencil is positive, consistent and first-order accurate. It is especially noteworthy

that all of the stencils created using this quadratic reconstruction scheme are consistent

and first order accurate. As will be shown in the next sections, this behavior will be evi-

dent on arbitrary meshes. But, as is also shown in practice in the next chapter, a positive

stencil on realistic cut, Cartesian grids is very difficult to maintain.

3.2 Summary and Choice of Viscous Flux Functions

At this point, six different schemes have been analyzed to reconstruct the gradients

needed to form the viscous flux function. The first two schemes, which use a Green-Gauss

type reconstruction on a path formed by cell centroids or by existing faces in the mesh,

were shown to have a tendency to produce decoupled solutions. This decoupling can

inhibit convergence, and if converged, can yield noisy, non-smooth solutions. This was in

fact observed when using the first scheme to compute a low Reynolds number flow, and

prompted the analysis shown here. Due to this behavior, these two schemes are not wise

choices for the viscous flux functions in a general, Navier-Stokes solver.

Of the four remaining schemes, the Green-Gauss reconstruction upon the diamond path

using the simple vertex weighting has been shown to give a dangerously inconsistent

Laplacian upon one of the model meshes. This behavior is traceable to the accuracy in

which the gradient is obtained: The reconstructed gradient truncation error is zeroth order.
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This property of a linearity-preserving weighting, and the benefits of using higher than

linearity preserving reconstructions can be realized by analyzing the construction of the

discrete Laplacian in a little more detail. If the Laplacian is to be constructed upon an arbi-

trary control volume and a second-order quadrature of the reconstructed gradients at the

control volume interfaces is performed, the general formula for the Laplacian is

L(u)

The reconstructed gradient D (u)

D (u) = Dx'_ + Dy_ where

l e_ " (D(u) -fi) (3.83)=A s

is expanded in a Taylor series about the cell centroid as

D x = bou x + blUy + (b2uxx + b3uxy + b4uyy ) h + 0 (h 2)

Dy = CoUx + C lUy + ( C2Uxx + C3Uxy + C4Uyy) h + 0 (h 2)

(3.84)

The terms b 1 and co axe included to account for non-lineaxity preserving expansions of

the gradients. Inserting into (3.83) and collecting like terms, the following is obtained

AL (u) = Ux_ (bonx+ Cony) + UyZ (blnx+ Clny) +

Uxx E ( b2n x + C2ny ) h + Uxy Z ( b3n x + C3ny) h (3.85)

Uyy Z (b4n x 4- C4ny ) h -I-...

The sums axe taken over the faces, where for general meshes, each expansion will have

different b,, and c n. From here, it can be seen where fortunate geometric cancellations

actually occur, and how importantly the quality of the reconstructed gradients comes into

play.

A perfectly-reconstructed gradient will have terms in the expansions (3.84) corre-

sponding to the exact Taylor series expansion. In that case, the b n and cn shown in (3.84)

should be
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xgb 0 = 1, b 1 = b 4 = O, b 2 = -h-' b3 =
(3.86)

x,c 1 = 1, c o = c 2 = 0, c 3 = h' (74 =

where the (x, y) g is taken to be the midpoint of each of the faces. By application of dis-

crete forms of the divergence theorem, one can see that this will always guarantee a sec-

ond-order accurate Laplacian upon an arbitrary mesh. What is also apparent, is that to

obtain a higher-order-accurate Laplacian, a quadrature of higher order on the control vol-

ume faces is also needed.

The behavior of the non-lineadty-, linearity- and quadratic-preserving schemes is

readily apparent by examination of the reconstructed gradients in terms of the discrete

Laplacian formula. If a non-linearity preserving gradient is formed, then b 0 _ 1, c I _ 1,

b I , 0 and c o # 0 , which, unless a very fortunate geometric cancellation occurs, will not

even yield an inconsistent Laplacian. This implies that a Laplacian can be obtained that

will never yield a grid converged solution, even to the wrong equation, since the expanded

Laplacian will contain weights to order 1/h. If linearity-preserving gradients are formed,

then at least local grid convergence can be achieved, but consistency is not guaranteed. In

this case, a linearity preserving reconstruction will give b 0 = c 1 = 1 and b 1 = co = 0.

A quadratic-preserving reconstruction is then seen to be the only type of reconstruction to

guarantee a first-order accurate Laplacian on arbitrarily distorted meshes. From this view-

point, the choice of flux functions appears to be a simple one; namely, choose the qua-

dratic reconstruction procedure.

But, this analysis of the accuracy of the Laplacian leaves out a very important and prac-

tical aspect: positivity of the stencil. Positivity is a difficult thing to prove on general

meshes, since as can be seen in (3.85), the discrete Laplacian involves not only the geom-

etry of the cell faces, but also the spatial locations of the surrounding cells, and their

weights in the reconstructed gradients. If simplifications are made regarding the connec-
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tivity and shape of the mesh, statements about positivity of the stencil may be proven. This

is shown in [7] for finite-volume solutions of Laplace's equation upon triangular/tetrahe-

dral meshes (in two and three dimensions) using a vertex based scheme with a special co-

volume upon which conservation is maintained. This procedure is shown to be equivalent

to a Galerkin formulation using linear finite-elements with a lumped mass matrix. In two

dimensions, a Delaunay mesh is sufficient to ensure positivity, while in three-dimensions,

slightly more restrictive criteria are needed. Although positivity can be gained by a partic-

ular quality of the mesh, the accuracy of the resulting stencils is not addressed and is sus-

pect.

This whole argument seems to indicate opposing forces at work: accuracy versus posi-

tivity. Can strictly positive and accurate stencils be obtained on generally distorted

meshes? Or, can one relax the requirement upon one, say accuracy, at the expense of the

other, positivity? A positive, yet highly inaccurate scheme can be obtained by using only

face data of the cells. But, as is pointed out above, this can yield a dangerously inconsis-

tent stencil since the reconstructed gradients will not be ensured to be at least linearity pre-

serving. Perhaps then, a linearity-preserving scheme is the lowest form which one can use.

But, the question is then, how bad will it be to try a higher-order reconstruction, as in the

quadratic reconstruction scheme?

It is noteworthy to point out that when solving the Navier-Stokes equations, the positiv-

ity of the update to the cell contains contributions from both the inviscid and viscous oper-

ators. For high Reynolds numbers, the issue of positivity of the viscous operator might not

be as dramatically evident as for lower Reynolds numbers. Since the viscous terms are

scaled inversely with the Reynolds number, the positivity of the inviscid operator can

mask the non-positivity of the viscous stencil. This is a dangerously deceptive scenario:

Although stability might be obtained, the violation of the local maximum principle is still

evident in the viscous terms.
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Thetwo bestschemesfrom theprecedinganalysisareusedin thenextchapterto com-

putelow/moderateReynoldsnumberflowscorrespondingto somestandardviscoustest

problems.Thetwo schemesarechosenbaseduponthequalitiesof eitherpositivity or

accuracy.TheGreen-Gaussreconstructionschemewith the linearity-preservingvertex

weighting is chosento representthe lessaccurate,yet morepositivescheme.Thequa-

dratic reconstructionschemeis thenchosento representthemoreaccurate,yet lessposi-

tive scheme.

Theanalysisshownin thischaptershedslight ontothebehaviorof theschemes,but

only onsimplified grid topologies.Sincemanydifferenttopologiesarepossible,a more

generalmethodis neededthatcandiscretelycomparethetwo reconstructionprocedures,

buton arbitrarymeshes.In AppendixB, methodsto form thediscreteLaplaceoperators

onarbitrarymeshesfor thecandidatereconstructionschemesarederived.Oncethese

operatorsareformed,a localTaylor seriesexpansionyieldsanestimateof the localerror

while positivity of theoperatoris assessedby examinationof thecoefficientsin thesten-

cil. For thediamond-pathreconstruction,generalconditionsfor positivity in termsof

meshgeometryarederivedandpresentedin AppendixB. Thediscreteaccuracyanalysis

canexplainmuchof thebehaviorof thetwo schemes,but thebestproof, asalways,liesin

theactualuseof theproceduresto computeactualflows:Thenextchapterperformsa

detailedcomparisonof theresultsof computationsusingbothof thecandidateschemes.



CHAPTER IV

Adaptively-Refined Solutions of the

Navier-Stokes Equations Using a

Cartesian, Cell-Based Approach

This chapter compares results obtained using the two candidate viscous flux functions

for some well-known flow fields. Where solutions are available, and differences are

noticeable, the diamond-path reconstruction scheme and the quadratic reconstruction

scheme results are directly compared to each other and to theory, experimental data, or

accepted computational results. But first, some important procedures in obtaining the

results are highlighted.

4.1 Implementation Specifics

Development of a working flow solver following the methods described requires many

ancinary procedures and operations to work properly. As in most complicated algorithms,

it is the specifics of the details that make or break the assembled components. This section

will outline a few things that have been used here that otherwise would be left out of the

description. Although this list is not complete, the important pieces are shown.

4.1.1 Time-Step Calculation

Some important information can be found by examining the positivity of the assembled

inviscid and viscous operators. Consider solving a convection-diffusion equation, repre-

sentative of the x-momentum equation, as

t)Uo B V2 U
p--_--+VoF = _ 0 (4.1)
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Integrating over the control volume, and dividing by the area yields

Du o

_t
1 _FendS+ _t L

pA s pRe (u°)
(4.2)

where L(u) is the discrete Laplacian. If the inviscid flux balance is approximated using a

first-order upwind flux, further simplified to be based on the maximum wave speed only,

as

F = O'._u0 + O').uf (4.3)

where the modified wave speeds are

(1°1+-°) (4.4)

the semi-discrete form of the model equation becomes

0Uo _ 1 ,_ (_ u0 + O._u.f) ASf+ _ aoU 0 + '_ anu n (4.5)
3t Af= 1 n= 1

Discretizing in time with a simple Euler approximation and grouping terms

gl rfaces ,_+u 0 = u 1 -At
O_OP.) 1 faces At if- N- Z +"'' Z u.
pReJJ f=l n=l

(4.6)

Requiring the new value of u 0 to be bounded by the data used to compute it, a positiv-

ity constraint upon each of the terms pre-multiplying u results. By construction, all of the

t_ > 0 and c_ < 0. Positivity of the Laplacian ensures that all the a n are positive and

consistency then requires a 0 < 0. Requiting positivity of the bracketed terms results in the

time step
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At 1
- (4.7)

A faces BtXOA

_.o_ pRe
f=l

This shows a clear differentiation between the inviscid and viscous terms limiting the time

step. In practice, as is shown in [51 ], it is best to combine the two in the following way

At ( AtiAtv ]A - Cn _At--_t v (4.8)

where At i and At v represent the inviscid and viscous time steps.

Ati 1
- (4.9)

A Faces

__, (lUhx + vhy I + a) ASf

f=l

At v K v

A AB

pRe °_o

(4.10)

For safety's sake, K v in (4.10), as inspired by [51], is taken to be K v = 0.25. The impor-

tance of performing the discrete Laplacian analysis is now apparent, from the inclusion of

the true stencil weight, {xo in (4.10).

4.1.2 CFL Cut-Back Procedure

Typically, most calculations are begun with initial conditions corresponding to uniform

flow at the reference state. This can cause severe start-up problems for flows around realis-

tic geometries, where a large transient in the residuals can cause negative pressures and

temperatures, which can sometimes kill the calculation. To overcome this problem, a CFL

cutback procedure is used, which limits the maximum relative change in density and pres-

sure per time step. At the beginning of each time step, the maximum relative change in
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pressureanddensityover thegrid is foundfor aCourantnumberof one.Thatis, if the

residualsrepresenttheflux balancesdividedby thecell area,thenthechangein thecon-

servedvariablesis

qoA ql =A

q3

Ro

R1

R2

R 3

(4.11)

The relative changes in density and pressure are then

£p--

Ap Aq o

P q0
(4.12)

AP = (_'- 1) [Aq3- (uAql+vAq2) +Ap
( U2 ÷ V2) 1

32

(4.13)

Requiring the maximum change per time step in either the normalized density or pressure

to be less than some specified tolerance, ecu t, the Courant number may be cut back by

C n = rain ( Cn' Cn, max)

Cn - Ecut
£

£ = max (£p, £p)

(4.14)

where Cn, max is the maximum allowable Courant number for the time stepping scheme

and e is taken to be the maximum relative change in density or pressure over the entire

grid. Typically, ecu t = 0.1 seems to work well. Usually, if a CFL cut back is needed, it

only appears in the early stages of the calculation, and the Courant number quickly

increases back to the maximum allowed.
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4.1.3 V'tscous Gradients Reconstruction Procedure

The heart of the reconstruction of the viscous gradients for the diamond path recon-

struction is an application of the divergence theorem to a four-sided polygon. Since the

reconstruction involves the line integral of quantities around this polygon, this single path

can be broken into two paths around two triangles which share a common face. The com-

mon face is taken to be the face separating the two cells. Since the gradient in each of

these triangles is easily found from (3.75), they are combined to give the gradient in the

entire co-volume.

Vertex Centroid

Centroid

VU =
V ulA 1 + V u2A 2

A 1 +A 2

Figure 4.1 Path Integration for Gradient Reconstruction

4.1.4 No-Slip Boundary Conditions

No-slip boundary conditions are applied to the cut cells on the no-slip boundaries by

specifying the two velocity components to be zero and the wall temperature to be a speci-

fied value. The components of the inviscid flux at the boundary is then simply
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^

F=P (4.15)

Evaluation of the viscous flux at the boundary requires the gradients to be evaluated at the

boundary face. The gradients at the face can be reconstructed in a few different manners.

The simplest is accomplished by performing a line integral around the path formed by the

two vertices on the boundary and the cell centroid. Since this path is a triangle, the gradi-

ents are easily found from (3.75), and is termed a local triangular reconstruction.

U -----V_ 0

T = Twall

Figure 4.2 No Slip Boundary Conditions: Local Triangular Reconstruction

Unless otherwise noted, the wall temperature is always specified, so the gradients of tem-

perature for the heat fluxes into the wall are found using the same procedures.
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4.2 A Practical Comparison of the Two Candidate

Reconstruction Schemes

The two candidate reconstruction schemes are used to compute some low and moderate

Reynolds number flows; two low Reynolds number flows in a driven cavity and two low

Reynolds number flows over backward facing steps. A higher Reynolds number flow over

a flat plate is computed, and the orientation of the flat plate with respect to the base coordi-

nate axes is changed to bring out the effects of cell cutting. For each case, the Laplacian

stencils are examined on each grid for accuracy and positivity, and the computed results

from the two schemes axe directly compared to each other and to theory or experimental

data. Finally, to demonstrate the geometric complexities that may be gridded and com-

puted with the Cartesian ceil scheme, the flow through a branched duct with cooling fins is

computed.

4.2.1 Driven Cavity Flow

The laminar flow in a square, driven cavity is computed and compared to the computa-

tional data of Ghia et. al. [28]. A schematic of the geometry and boundary conditions is

shown in Figure 4.3.
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u = VUd

v=O

Figure 4.3 Schematic of Driven Cavity Flow

In [28] an incompressible formulation of the Navier-Stokes equations was solved using

an implicit multi-grid method, where tabulated u- and v-velocity data is supplied along the

lines through the geometric center of the cavity. The computed data were obtained on a

129 by 129 unstretched grid. To compare with these incompressible results, the Mach

number used here is taken to be Mli d --- 0.1 SO that the non-dimensionalizing Reynolds

number is related to the lid Reynolds number as

Relid
Re** - (4.16)

M**

The moving cavity lid sets up a strong vortex in the cavity, which induces smaller, sec-

ondary (and for the high Reynolds numbers, tertiary) vortices in the comer regions. Data

are supplied for Reynolds numbers of Reli d = 100,400, 1000, 3200, 5000, 7500 and

10,000 [28]. Computations are made here using adaptive mesh refinement for the two
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reconstruction schemes for the Reynolds numbers of 100 and 400. The results are com-

pared to each other and to the computational results of [28]. The quality of the grids and

the accuracy of the two reconstruction procedures are assessed by tabulating the discrete

accuracy and positivity parameters outlined in Appendix B.

4.2.1.1 Re=100

A uniform base grid of 1024 cells (32 by 32) is generated, and three levels of adaptive

mesh refinement beyond the base gxid are obtained for both schemes. Both schemes do an

excellent job, even on the coarse base grid: Adaptive mesh refinement improves the solu-

tion slightly, but the initial solution is quite good. Figure 4.4 and Figure 4.5 show the

computed u- and v-velocity profiles along vertical and horizontal lines through the geo-

metric center of the cavity for the diamond path scheme (the nurnher of cells at each

refinement level is shown in parenthesis). Figure 4.6 shows the final adapted grid and

Figure 4.7 shows contours of u-velocity.

Y/Llid
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Figure 4.4 u-velocity Along Vertical Line Through Geometric Center
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Figure 4.5 v-velocity Along Horizontal Line Through Geometric Center

As is seen in the adapted grid, the mesh-adaptation strategy resolves the singularity in

the u-velocity at the comers at the expense of not resolving other important regions of the

flow: There are two secondary vortices induced in the corners of the cavity, as shown in

Figure 4.8.

• i i E

IIIIIIIIIIIIIIIIII M
II I I I I I I I I II II II II I I I II

I I I I I I I I I I II I II II I I II
IIIII IIIIIIIIIII II

Illliillllllllllllill

,,,,,,,,,,,,_,,,,IIIIIIIIIIIIIIII
I, ,,,,,,,,,,,,,,,"

,,,,,,, ,, ,,,,,,,,,,,,,,,

Figure 4.6 Refinement Level 3 Adapted Grid, Re=100 Case
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\

Figure 4.7 Refinement Level 3, u-velocity Contours

C}

/

Figure 4.8 Particle Paths: Level 3 Grid

There is a negligible difference between the results computed by the two viscous-flux

schemes, so there are no comparison plots shown here. It is encouraging to see that both

schemes performed well, and it is interesting to see that there is little difference between

the results from the two reconstruction procedures. The lack of difference between the two

schemes can be attributed to the good quality of stencils that both schemes create on the

grids. Table VI and Table VII characterize the global non-positivity of the mesh and the
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non-positivityof theworst stencils on the mesh by showing the L 1 norm of the positivity

parameter, (3.45),over all cells analyzed and the minimum of all the positivity measures.

Table VI Discrete Positivity Measures, Quadratic Reconstruction Scheme, Re=100
Grids

Mesh
Refinement

Level L 1 of _min min (_min)

0 O.O00e+O0 O.O00e+O0

1 O.O00e+(D O.O00e+O0

2 -1.584e-03 -5.423e-01

3 -4.215e-05 -1.069e-01

Table VII Discrete Positivity Measures, Diamond Path Reconstruction Scheme,

Re=100 Grids

Mesh

Refinement

Level L 1 of _min min (_min)

0 O.O00e+O0 O.O00e+O0

1 -6.627e-03 -3.580¢-01

2 -1.107e-02 -3.580e-01

3 -1.108e-02 -3.580e-01

The quadratic scheme generates fewer stencils with negative weights, but has the most

non-positive stencil of the two schemes. Both schemes yield adequate stencils for the

grids, which they should as the grids are regular due to no cell cutting, and the only non-

smoothness is incurred across refinement boundaries.

The accuracy is evaluated next by comparing the sums in the discrete Taylor series

expansion to the values that should be obtained for a consistent Laplacian. For each cell,

the stencil weights are used to compute the sums in (3.30) to (3.35), and the L 1 and L**
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norms of the differences between the sums and the values required for a consistent Lapla-

cian axe made. As an example, the sum of _,anX2n should be equal to two if the Laplacian

is consistent in the Uxx term. So, to measure the deviation of the stencil from this, the

norms of _,anX 2 - 2 over the grid are found. If all of the stencils were consistent, these

norms would be identically zero. Since both schemes are at least linearity preserving, all

of the terms to order 0 and 1 in the sums, "_a n, _,anx . and _,any n sum to zero. The qua-

dratic-reconstruction scheme, by construction, yields stencils that are consistent: This

behavior is replicated in the discrete accuracy analysis as the sums described above are

zero to machine precision. The results for the diamond-path scheme, which cannot guar-

antee consistency, are shown in Table VIII.

Table VIII Discrete Accuracy Analysis: Diamond-Path Reconstruction, Re=100
Grids

Mesh

Level

L 1 of

Z O_nXnYn

L_ of

2
'_ _ anx - 2

Z,_ of

Z O_nXnYn

L** of

O_ 2_., ny n - 2

0 0.00e+00 3.33e-25 0.00e+00 0.00e+00 1.78e-15 0.00e+O0

1 2.43e-02 -1.41e-04 2.54e-02 9.53e-01 8.60e-01 9.53e-01

8.96e-063.83e-02 4.08e-02

4.06e-023.95e-02

9.53e-01

9.53e-01

2 8.60e-01

9.17e-01-7.89e-05

9.53e-01

9.53e-01

The results indicate that in a global sense the stencils obtained by the diamond path recon-

struction are good, and the error in consistency is low and would be difficult to notice.

What is also indicated is that there are a few bad cells in the grid, but globally the error is

quite low.
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4.2.1.2 Re=400

The conditions for this case are identical to the first, except that the Reynolds number

based on the lid speed and cavity depth is 400. A base grid is generated and 3 levels of

adaptive mesh refinement are performed for both schemes. As in the previous case, both

schemes are compared to each other and to the data in [28]. For this case, the base grid

solution is poor, but the adaptive mesh refinement improves the solution quality progres-

sively with each refinement level. Figure 4.9 and Figure 4.10 show the u- and v-velocities

compared to the computational data in [28] (the number of cells at each refinement level is

shown in parenthesis). As is seen in a plot of the grid at the final refinement level, the

adaptive-mesh refinement strategy has focused the refinement upon the singularities in

velocity at the upper corners, but does resolve the shear well interior to the domain.

Although there is room for improvement in the adaptation criteria, the criteria that were

developed for inviscid flows performs adequately.
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Figure 4.9 u-velocities on Vertical Line Through Geometric Center, Re=400
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Figure 4.10 v-velocities on Horizontal Line Through Geometric Center, Re=400

Figure 4.11 Final Adapted Grid, Re--400 Driven Cavity
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Figure 4.12 Particle Paths, Re=400 Driven Cavity

There is negligible difference between the results of the two viscous flux construction

schemes. This is directly attributable to the quality of the stencils that both schemes create

on the grids. Table IX and Table X show the discrete positivity measures for the schemes.

Table IX Discrete Positivity Measures, Quadratic Reconstruction Scheme, Re=400

Grids

Mesh

Refinement

Level L 1 of _min min (_min)

0 O.O00e+O0 O.O00e+O0

1 O.O00e+O0 O.O00e+O0

2 -9.962e-05 -5.425e-01

3 -6.566e-05 -3.962e-01
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Table X Discrete Positivity Measures, Diamond-Path Reconstruction Scheme,
Re=400 Grids

Mesh

Refinement

Level

0

L 1 of (_min

0._0

min ( _ min)

0._0

1 -3.548e-03 -3.576e-01

2 -6.477e-03 -3.580e-01

3 -7.003e-03 -3.682e-01

For these grids, the diamond path scheme produces many more non-positive stencils

than the quadratic scheme, but the scheme with the most non-positive stencil is the qua-

dratic reconstruction. The diamond-path reconstruction scheme can not guarantee consis-

tency, but the quadratic scheme does: The accuracy norms for the quadratic reconstruction

are zero to machine precision. As before, the diamond path scheme is strictly inconsistent,

but in a global sense, this inconsistency is low.

Table XI Discrete Accuracy Measures, Diamond Path Reconstruction, Re=400 Grids

Mesh

Level

L 1 of

2
_, anx _ - 2

L 1 of

X _nXnYn

L** of

_, an x2 - 2

L.. of

0 O.OOe+O0 -1.64e-33 O.OOe+O0 O.OOe+O0 3.55e-15 O.OOe+O0

1 1.23e-02 9.80e-05 1.22e-02 9.53e-01 8.60e-01 9.53e-01

2 2.18e-02 9.65e-05 2.34e-02 9.53e-01 8.60e-01 9.53e-01

3 2.45e-02 5.8 le-05 2.53e-02 9.53e-01 9.17e-O1 9.53e-01



129

4.2.2 Backward-Facing Step Flows

The low Reynolds number flow over a backward-facing step (sudden expansion) is

computed using the Cartesian cell-based approach. The results are compared to the exper-

imental results of [3] at Reynolds numbers of 100 and 389, based on the pre-step hydraulic

diameter and mass flow rate. That is,

V(2h)
Re - (4.17)

V**

where V is the mass averaged flow rate, which for the fully developed profile entering the

2
channel is V = _ U,nax. For both Reynolds number calculations, the boundary conditions

are applied as indicated in Figure 4.13.

u(y)[

;:oj
P t / •

ex rap INO _llp

No £11_

_Y ...x

N_ Slip

T
LS--4.9 mm

r

No Slip

H=10.1 mm

Figure 4.13 Backward Facing Steps Schematic

Local

Riemann

Problem

The inflow velocity profile is fully developed

u (y) = Ureax ( 1 - rl 2)

(4.18)2

11=l+_(y-h)

The pressure at the inflow is extrapolated to first-order from the interior, from which the

flux is directly found. A local Riemann problem is solved at the outflow boundary, using

the inviscid numerical flux function, where the left state is taken as the cell average of the
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cell on the boundary, equivalent to a first-order flux construction, while the right state is

obtained from a parabolic velocity profile, (constant) freestream density, and a specified

(constant) back pressure. Since the inflow pressure is allowed to adjust and the mass-flow

rate is fixed, the proper streamwise pressure gradient on the flow is provided. No-slip

boundary conditions are applied on all walls, with a specified temperature equal to that at

reference conditions. The reference conditions are chosen so that the Mach number of the

maximum velocity of the inflow profile is 0.2.

4.2.2.1 Re=100

A coarse base grid is generated, and both schemes converge the solution through the

requested three levels of adaptive mesh refinement. Figure 4.14 shows the convergence

histories of the two schemes. Adaptive mesh refinement is made according to the convec-

tive criteria presented in Chapter II, and no attempts are made to modify the criteria. The

mesh refinement improves the solution through each level of refinement, and both

schemes perform well and yield nearly identical results. Figure 4.15 shows the improve-

ment of the solution due to mesh refinement for the diamond-path reconstruction scheme,

at a given location in the backstep, where there is a significant reversed flow region. A

close-up of the adapted grid near the backstep at the final level of mesh refinement is

shown in Figure 4.16. Both schemes are compared to each other and to the experimental

data at a selected series of locations in Figure 4.17 to Figure 4.21.
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Figure 4.15 Re=100 Backstep: Comparison of Adapted Solutions to Data at x/S=2.55
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Figure 4.16 Adapted Grid at Refinement Level 3: Close-up Near Step
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Figure 4.17 Comparison of the Diamond Path Reconstruction and Quadratic
Reconstruction Computed Results to Experimental Data at x/S=0.
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Figure 4.18 Comparison of the Diamond Path Reconstruction and Quadratic
Reconstruction Computed Results to Experimental Data at x/S=2.55.
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Figure 4.19 Comparison of the Diamond Path Reconstruction and Quadratic
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134

y(mm)

6.0

-1.0

-2.0

-3.0

-4.0

-5.0

-6.0
-0.2

4.0 o..

3.0 "e..

2.0 e''V-...
• Experimental Data "------1 • ',.,.

1.0 ..........DiamondPath Reconstmctior_ O\O
0.0 .... Quadratic Reoonstruction I •)

t_e/'°

I , I , I ,

0.0 0.2 0.5 0.8

U/U=, max

Figure 4.20 Comparison of the Diamond Path Reconstruction and Quadratic
Reconstruction Computed Results to Experimental Data at x/S=4.18.
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Figure 4.21 Comparison of the Diamond Path Reconstruction and Quadratic

Reconstruction Computed Results to Experimental Data at x/S=0

The two viscous reconstruction schemes are analyzed as before, by comparing the dis-
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crete accuracy and positivity measures on the grids obtained throughout the refinement

process.

Table Xll Discrete Positivity Measures for Diamond-Path Reconstruction, Re=100
Grids

Mesh

Refinement

Level L 1 of _min rain (_min)

0 -2.953e-02 -3.580e-01

1 -2.045e-02 -3.580e-01

2 -2.544e-02 -3.580e-01

3 -1.723e-02 -3.682e-01

Table XIII Discrete Positivity Measures for Quadratic Reconstruction, Re=100 Grids

Mesh
Refinement

Level L 1 of Cgmin min (_min)

0 -4.675e-04 -3.212e-01

1 -5.415e-03 - 1.956e+00

2 -4.898e-03 -2.330e+00

3 - 1.295e-02 -2.818e+00

As can be seen from these two tables, the diamond-path reconstruction scheme creates

more non-positive stencils than the quadratic reconstruction scheme, but these non-posi-

tive stencils are less non-positive than the quadratic stencils. What is also shown is that the

quadratic reconstruction scheme generates some very non-positive stencils, since the min-

imum _min over the grid are approaching over 280 percent of the root mean square of the

coefficients in the local stencil. Considering the magnitude of this non-positivity, it is sur-

prising that a solution was obtained at all. Table XIV shows the discrete accuracy norms
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for the diamond-path reconstruction scheme. The quadratic-reconstruction scheme guar-

antees consistency by construction: These norms are all at machine zero for all refinement

levels for the quadratic reconstructions, and are not shown here.

Table XIV Discrete Accuracy Measure, Diamond Path Reconstruction Scheme,

Re=100 Grids

Mesh

Level

L 1 of

E O_nXnYn

L I of

CX 2.y. - 2

L** of L= of

0 8.49e-02 -2.64e-03 5.97e-02 9.53e-01 8.60e-01 9.53e-01

1 6.46e-02 1.88e-05 4.19e-02 1.10e+00 9.17e-01 9.53e-01

2 9.33e-02 -5.79e-08 8.80e-02 1.44e+00 9.17e-01 9.53e-01

1.30e-05 1.39e+006.11e-02 9.17e-015.52e-023 9.53e-01

Since the diamond-path scheme does not guarantee consistency, the discrete sums axe not

identically equal to the required values, but in an L 1 sense, the entire grid is nearly consis-

tent.

4.2.2.2 Re--389

For both reconstruction schemes, the same, coarse base grid is generated, after which

adaptive mesh refinement is performed. Adaptive mesh refinement is desired for three lev-

els of refinement beyond the base grid. The diamond-path reconstruction scheme performs

well, and successfully converges the solution at all refinement levels, while the quadratic

reconstruction scheme is only able to converge the base and next two levels of refinement.

The final, third level of refinement diverges, as will be seen, due to a set of very non-posi-

tive stencils. The following plot shows the "convergence" history of the two schemes.
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Figure 4.22 Convergence History, Re=389: Diamond Path and Quadratic
Reconstructions

As in the previous case, direct comparisons between the two reconstruction procedures

and between experiment are shown, in Figure 4.24 to Figure 4.28, but here the compari-

sons are made at the second refinement level. As before, both schemes obtain stencils that

are of comparable accuracy, so that it is difficult to see any appreciable differences on the

velocity plots. Figure 4.23 illustrates the improvement in the solution quality automati-

cally obtained with the solution-adaptive mesh refinement.
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Figure 4.23 Effect of Adaptive Mesh Refinement Upon Solution at x/S=2.55, diamond-
path scheme.
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Figure 4.24 Comparison of the Diamond Path and Quadratic Reconstructions
computed results to Experimental data as x/S---0, AMR Level 2.
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Figure 4.25 Comparison of the Diamond Path and Quadratic Reconstructions
computed results to Experimental data as x/S=2.55, AMR Level 2.
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Figure 4.26 Comparison of the Diamond Path and Quadratic Reconstructions

computed results to Experimental data as x/S=3.06, AMR Level 2
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computed results to Experimental data as x/S--4.18, AMR Level 2.

y(mm)

6.0

5.0

4.0

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

-4.0

-5.0

-6.0
-0.2

•\

• Exp_mental Data "00......... Diamond Path Reconstructior
!.... Quadratic Reconstruction

:" •

s

i i I

0.0 0.2 0.5

U/U..,, max

0.8

Figure 4.28 Comparison of the Diamond Path and Quadratic Reconstructions
computed results to Experimental data as x/S=13.57, AMR Level 2.

There is little difference between the computed profiles from the two reconstruction

schemes. What is very noticeable, though, is that the quadratic reconstruction scheme

diverges on the final grid-refinement level. An examination of the norms of the positivity



141

measureshowssimilarbehaviorasin the lowerReynoldsnumbercase.Thediamond-path

reconstructionyieldedmorenon-positivestencilsthanthequadraticscheme,but thenon-

positivestencilscreatedby thequadraticschemeweremorenon-positivethanthedia-

mondpath's.TableXV and TableXVI showthediscretepositivity measuresfor thegrids

obtainedthroughadaptivemeshrefinementfor thediamond-pathandquadraticrecon-

structionschemes.

Table XV Discrete Positivity Measure, Diamond Path Reconstruction,Re=-389Grids

Mesh
Refinement

Level L 1 of _min min (_min)

0 -2.953e-02 -3.580e-01

1 -2.040e-02 -3.580e-01

2 -2.572e-02 -3.671e-01

3 -2.216e-02 -3.682e-01

The discrete accuracy analysis shows similar trends as before, and are shown in Table

Table XVI Discrete Positivity Measure for Quadratic Reconstruction, R_389 Grids

Mesh
Refinement

Level L 1 of _min min (_min)

0 -4.675e-04 -3.212e-01

1 -9.501e-03 -2.341e+00

2 -1.167e-02 -2.820e+00

3 -9.796e-03 -2.491 e+00

XVIII. The quadratic reconstruction procedure guarantees consistency, and the diamond-

path reconstruction does not. The inconsistency due to the diamond-path reconstruction is

low, and the stencils are nearly consistent. Since consistency is guaranteed by the qua-

dratic reconstruction, the accuracy norms are all at the level of machine zero, and are not



142

shown hem.

Table XVII Discrete Accuracy Analysis, Diamond Path Reconstruction, Re=389

Mesh

Level

L 1 of

Xan x2 - 2

L 1 of

E(XnXnYn

L 1 of

2nyn - 2

L_ of Z** of

E(XnXnY n

L_ of

0 8.49e-02 -2.64e-03 5.97e-02 9.53e-01 8.60e-01 9.53e-01

1 6.78e-02 -3.25e-04 5.37e-02 1.10e+00 9.17e-01 9.53e-01

2 9.95e-02 1.08e-04 9.81e-02 1.39e+00 9.17e-01 9.53e-01

3 8.28e-02 -8.45e-05 8.12e-02 1.39e+00 9.17e-01 9.53e-01

The non-convergence of the final refinement level for the quadratic reconstruction scheme

is directly attributed to a region containing some very non-positive stencils. Figure 4.29

and Figure 4.30 shows a close-up of u-velocity contours in the region, and Figure 4.31

shows the positivity measures of the stencils in the region.

See Close-up in Figure 4.30

Figure 4.29 Contours of u-velocity from Quadratic Reconstruction, Level 3 AMR
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Figure 4.31 Discrete Positivity Measures, amin" in Problem Region of Figure 4.30

As can be seen from these figures, a set of extremely non-positive stencils are made in the

recirculation region of the flow, near the reattachment point. This region of the domain is

close to the reattachment point, where both the u- and v-velocities are low, yet the shear is

not: positivity of the viscous operators is very important. The stencils obtained from the

quadratic reconstruction procedure in this region have negative weights whose values are
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nearlytwo timestheroot meansquareof theweightsin thestencil,which is adangerously

high value.Thediamondpathreconstructionprocedureis notguaranteedto bepositive

either,but as TableXV and TableXVI show,is not nearlyasnon-positiveasthequa-

draticreconstructionschemeandis ableto obtainasolutionthroughall levelsof refine-

ment.

4.2.3 Laminar, Developing Flow Over a Flat Plate: Coordinate Axes

Aligned

The laminar, developing flow over a flat plate which is aligned with the freestream is

next used to validate the solver. Boundary-layer theory provides a similarity solution

which is used to judge the quality of the computed results. Uniform flow is imposed ahead

of the plate, and the flow is allowed to develop from the leading edge. This is a more strin-

gent test than imposing a velocity profile at some location downstream of the leading

edge, and allowing the flow to develop. Since resolution near the singularity at the leading

edge is directly responsible for the quality of the flow downstream, this flow solution

brings to light the effects of adaptive mesh refinement.

The similarity solution is well known and is found in many introductory fluid mechanics

books. The ordinary differential equation which results can not be solved in closed form,

so in practice, one uses its tabulated numerical solution (see [71]). The streamfunction is

formulated in terms of the similarity variable

Y

which relates the u and v components to the similarity solution as

(4.19)

u(n)
u** 3xl (4.20)
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V 1 _}f

- Cv(n)= 2 -Y) (4.21)

The computation is made with a free-stream Mach number taken to be M.. = 0.2,

which eliminates any need for a compressibility transformation of the similarity solution.

For simplicity, the reference length is taken so that at x/l** = 1 the Reynolds number

based on distance from the leading edge is 10,000. The computational domain and bound-

ary conditions are illustrated in Figure 4.32.
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Figure 4.32 Schematic for Flat Plate Flow

,uter

mdary

,"/////A

At the upper, outflow and stagnation streamline boundaries the density and velocity

components are extrapolated from the interior and the pressure is specified at its reference

value. The root cell of the grid is located so that its south face lies along the plate surface.

When care is taken in providing an acceptable base grid resolution, the results of the Car-

tesian-ceU approach are excellent through all refinement levels. The exact solution pro-

vides a means of defining a suitable resolution of the flow for the base grid by allowing a

means to specify the cut cell face lengths and an acceptable resolution normal to the plate.

The allowable cut-cell face size is defined as a function of distance along the plate, guided

by the exact solution. The acceptable face-size criterion for plate bounded cut cells is

specified for the base grid as
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] x/l**

AScu , = rl0_Re----_. * (4.22)

The constant rl0 = 0.2 ensures that the first cell will be suffÉciently near the wall to pre-

dict the velocity to less than approximately 10% of the free-stream value. This face size

criterion is used to determine when the base grid is sufficiently resolved at the wall, but

does not specify a desirable resolution away from the wall.

The exact solution of the boundary layer flow also suggests a natural means of deter-

mining a local length scale normal to the plate. Each point in the flow can be located in a

plate-aligned coordinate system, from which its similarity coordinate is then found. If the

plate-aligned and normal coordinates are taken to be (s,n), the value of the similarity coor-

dinate is found as

?1

rl = 8 (s) (4.23)

where for the flat plate boundary layer flow,

l s (4.24)(s) = M_Re**

But, this only determines the viscous layer height, and not the variation of the length scale

across it. ff the desired grid should be spaced so that the maximum change in velocity nor-

real to the plate is relatively constant, the exact solution suggests a length scale in the sim-

ilarity variable as

Au

Arl - f"(TI) (4.25)

where Au is taken to be a constant. The physical length scale, 1, is then found as
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1 = Arl5 (s) TI8 (4.26)

where the boundary layer edge is located at _5 _=8. If a cell has a size greater than this

length scale, it is tagged for refinement. This grid-smoothing procedure is implemented

recursively until convergence of the grid is obtained. Figure 4.33 and Figure 4.34 com-

pare the grids obtained at the base refinement levels with and without the smoothing pro-

cedure by showing a close-up of the grid near the plate leading edge.

I, ,I, ,I, ,I, ,!, ,!, ,!, ,!, ,!, ,!,[,!

X
x _ 0 - = 0.25
L L

Figure 4.33 Close-up of Base Level Grid: No Length-Scale-Based Geometric
Refinement
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Figure 4.34 Close-up of Base Level Grid: Length-Scale Smoothing: Au = 0.2

Both viscous reconstruction procedures are used and are compared as before, by exam-

ining the discrete positivity and accuracy measures, and by comparing the computed

results to each other and to theory. The base grids for both schemes have 9837 cells, which

were generated using the length-scale smoothing parameter of Au = 0.1. Both schemes

are asked to perform two levels of mesh refinement beyond the base grid. Due to memory

limitations, the quadratic scheme only performs one level of mesh refinement beyond the

base grid, and is slowed considerably by cpu paging for the desired final grid of over

51,000 cells. This is a consequence of storing pointers to the 6 neighbor cells needed for

each face gradient reconstruction, which is quite redundant, as all the information could be

obtained from the tree. For this work, speed has always been the primary goal, and due to

this, memory usage is not as efficient as could be. The effect of adaptive mesh refinement

is shown in Figure 4.35 and Figure 4.36 for the diamond path scheme for all levels of

refinement at a location corresponding to Re x = 8000.
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Figure 4.36 v-velocity Profiles: Effect of Adaptive Mesh Refinement at

Re x = 8000, Diamond Path Reconstruction.

The flow is well resolved so that there is little effect from the adaptive mesh refinement in

the u-velocity profiles, but there is a slight improvement in v, as the mesh refinement
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movesarefinementboundaryfartherawayfrom thewall, to aregionof lessgradient.Ona

large scale, the skin friction is predicted well, as is indicated by the u-velocity profiles, and

is shown in Figure 4.37. There is a slight overprediction in the first 10 percent of the plate,

but overall the agreement is quite good.
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Figure 4.37 Skin Friction Through Adaptive Mesh Refinement, Diamond-Path
Scheme.

There is little difference between the results of the two reconstruction schemes at the final

grid refinement level. Examination of the u-velocity profiles at the final refinement levels

yields results from the two schemes that are indistinguishable, and the v-velocities are

nearly identical. Figure 4.38 shows the v-profiles from the two schemes at a location of

Re x = 8000. The lack of difference between the two schemes is directly attributable, as

in the previous cases, to the quality of the grids obtained on all the meshes. The inconsis-

tencies incurred by the diamond-path reconstruction scheme are low, and yields results

that are little different from the quadratic scheme.
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Figure 4.38 Comparison of v-velocity profiles at Re x = 8000.

Table XVIII and Table XIX compare the positivity measures of the two schemes on

the adaptively refined grids and Table XX shows the norms of the accuracy measures for

the diamond-path reconstruction. As stated earlier the diamond-path reconstruction does

not guarantee consistency, while the quadratic reconstruction does. This is directly shown

by the accuracy norms: the quadratic reconstruction gives the correct accuracy norms to

machine zero, and they are therefore not shown here. Also as before, neither scheme guar-

antees positivity of the stencil: The diamond-path scheme gives more non-positive stencils

than the quadratic scheme, but the quadratic scheme gives stencils which are more non-

positive.
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Table XVHI Discrete Positivity Measure for Diamond Path Reconstruction

Mesh

Refinement

Level L 1 of _min min (_min)

0 -2.649e-02 -3.456e-01

1 -1.187e-02 -3.679e-01

2 -1.025e-02 -3.682e-01

Table XIX Discrete Positivity Measure for Quadratic Reconstruction

Mesh

Refinement

Level

0

1

L 1 of _min min (_min)

-1.460e-02 -7.651e-01

-2.556e-03 -7.628e-01

Table XX Discrete Accuracy Analysis, Diamond Path Reconstruction

Mesh
Level

0

2

6.67e-02

3.33e-02

3.21e-02

L 1 of

Z_nXnyn

6.35e-04

2.13e-04

1.08e-04

L 1 of

1.14e-01

5.26e-02

4.8 le-02

Lo. of

2
_, OLnX,,- 2

9.53e-01

9.53e-01

9.53e-01

L** of

Z (XnXnY n

8.60e-01

9.17e-01

9.17e-01

L** of

2Y--, nYn - 2

9.53e-01

9.53e-01

9.53e-01

The geometric properties arising from the alignment of the coordinate axes with the

plate are fortunate. The root cell is located so that its southern face is exactly coincident

with the plate surface, which means that all of the cells located on the plate are uncut and

the only non-smoothness incurred by the grid is that across refinement boundaries.

The care taken in providing a suitable base grid comes about from experience. If there

is insufficient resolution of the cells in the boundary layer, the results obtained reflect the

under-resolution, as any viscous flow solver will. More importantly, if the flow is under-

resolved so that refinement boundaries axe located deep inside the boundary layer, the non-
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smoothnessof thegrid normalto thewall cancausesevereoscillationsin theskin friction.

This finding is not too surprisingif oneconsiderstheresultsof theanalysis:The current

viscous flux functions are highly sensitive to grid non-smoothness and produce non-posi-

tive operators at refinement boundaries.

Use of the viscous length-scale geometric scaling helps to alleviate this problem, pro-

vided a suitable choice is made for the velocity scale, Au. Figure 4.39 to Figure 4.42

show the grids obtained at the base (zero refinement) level for different values of the

velocity scale.

I

x - = 0.65
- = 0.55 L
L

Figure 4.39 Base Grid Close-up: No Viscous Length Scale Based Geometric
Refinement
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Figure 4.41 Base Grid Close-up: Viscous Length Scale Geometric Refinement:
Au = 0.15
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Au = 0.1

Close-ups of the skin friction at the same plate locations indicated in Figure 4.39 to

Figure 4.42 are shown in Figure 4.43 and Figure 4.44. When viewed on a larger scale, the

skin friction is predicted well, but when an under-resolved grid is used, or there is a refine-

ment boundary located sufficiently close to the wall (in a region of high velocity gradient),

the skin friction is oscillatory. Although the mean quantifies are smooth, their derivatives

are not. It is crucial to note that this oscillation in the skin friction comes about from

refinement boundaries being located in the viscous layer, and are not due to cut cells. The

location of the root cell on the plate boundary ensures that all of the boundary cells on the

plate are uncut. As can be seen from these skin friction plots, the reduction in the magni-

tude and period of the skin friction oscillations is directly attributed to the locations of

refinement boundaries in high gradient regions. Indeed, even at the finest viscous-scaling

level, there is a refinement boundary located 2 cells from the wail, showing up as a peri-

odic oscillation with a very low magnitude in the skin friction.
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Figure 4.43 Close-up of Skin Friction for Different levels of Viscous Layer Smoothings
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Figure 4.44 Close-up of Skin Friction for Different levels of Viscous-Layer-
Smoothings: Note the Change in Axis Scale
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Adaptivemeshrefinementcanalleviatetheoscillationsin skin friction, butcanalso

introducerefinementboundariesdueto theaxialvariationin lengthscale.Thisrefinement

isdesired,andis therealreasonto performadaptivemeshrefinement.Figure4.45to Fig-

ure4.46showclose-upsin thesameregionasbeforeof thegrid for thenext two levelsof

adaptivemeshrefinement.In thissequenceof gridsthebasegrid is thesamegrid asshown

in Figure4.42.Thefirst refinementeliminatestherefinementboundarycloseto thewall,

which eliminatesthefinescaleoscillationin theskin friction. Thenext level of refinement

hasaddedcellstoresolvetheplatenormallengthscale,which bythegrowthof thebound-

ary layerheight,decreaseswith increasingdistancefrom theplateleadingedge.Theadap-

tive meshrefinementat this levelhasintroducedarefinementboundaryneartheplate,at

approximatex/L = 0.6. This refinement boundary introduces a hump in the skin friction,

shown in Figure 4.44.

X

x = 0.55 _ = 0.65
L

Figure 4.45 AMR Level 1 Grid for Viscous-Length-Scale Base grid Au e = O. 1
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Figure 4.47 Close-up of Skin Friction through adaptive mesh refinement.
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Theoscillationsin skin friction in this case were all caused by the grid non-smoothness

introduced by refinement boundaries. The effect of grid non-smoothness induced by cell-

cutting is investigated next.

4.2.4 Laminar, Developing Flow Over a Flat Plate: Non-Coordinate

Axes Aligned

The same Reynolds number and free-stream conditions are used to compute the flow

over the same free-stream aligned flat plate as in the previous section, but here, the plate is

no longer aligned with the base coordinate axes. The computational domain is of the same

extent as in the previous case, but is rotated 30 degrees about the plate leading edge. Fig-

ure 4.48 shows the grid at the base refinement level.

\

\
\

+-HA

_ + d_Uir
_WV

Figure 4.48 Rotated Plate, Base Refinement Level Grid

This orientation causes a very non-smooth grid near the surface of the plate due to cell

cutting, and also causes a mis-alignment of the un-cut cell faces with the flow. Both of
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thesefactorsactto decreasethequality of the solution, but through different mechanisms.

Cell cutting greatly increases the non-smoothness of the grid, which as is shown earlier,

can decrease the accuracy and increase the non-positivity of the viscous operators. In addi-

tion, the ntis-alignment of the cell faces with the dominant flow direction causes the invis-

cid flux function to add excessive dissipation, as is shown in [69]. These factors all

combine to make the non-axis aligned results less accurate than the axis aligned results.

In practice, the positivity of the stencils turns out to play a major role. As in the previ-

ous case, two levels of adaptive mesh refinement beyond the base grid are attempted. Nei-

ther reconstruction procedure (without modification) is able to converge the flow through

all the refinement levels. The diamond-path reconstruction scheme diverges midway

through the second refinement level, while the quadratic-reconstruction procedure incurs

excessive time-step reductions at the base level, until the Courant number is cut to below

an acceptable level (C n = 1 xl0 -4 ), signalling the computation to stop.

But all is not lost. The analysis in 3.2.1.1 indicates that a positive stencil for a Lapla-

cian using the diamond-path reconstruction can be obtained by setting the weights used to

find the vertex data to zero. What is also indicated by the analysis is that this scheme will

not exhibit the same linearity-preservation property as before, and this will result in local

inaccuracy. The following results are obtained by setting the cut cells' vertex weights and

the weights of their neighbors to zero for the rotated plate using the diamond-path recon-

struction scheme. It is important to note that the only modification is made to the cut cells

and their neighbors: all of the interior-cell flux computations are unchanged. The viscous-

layer scaling was used for the base grid, where experience dictates setting the velocity

scale to Au = 0.1, and the solution is obtained at the base grid level and two levels of

adaptive mesh refinement. Figure 4.49 and Figure 4.50 show the velocities along and

normal to the plate at Re x = 8000 through the mesh refinement while Figure 4.51 and

Figure 4.52 show the results along the plate at the final refinement level.
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Figure 4.52 Plate-Normal Velocity Comparisons at refinement level 2

As in the axis-aligned case, after enough mesh refinement is performed, the solution

agrees well with theory, although the normal velocity component is not predicted as well

as in the axis aligned plate case. The predicted skin friction is very oscillatory, as is shown

in Figure 4.53, where the skin friction is shown at the final refinement level. Even though
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theviscous-layerscalingisusedto generatethegrid, andthegridis smoothawayfrom the

body,thenon-smoothnesscausedby grid irregularityof thecut cellscausesproblemswith

theskin friction. Figure4.55showsaclose-upof thegrid nearthewall for thefinal level

of adaptivemeshrefinement,showingthe smoothnessof thegrid awayfrom thewall and

thegrid irregularitiescausedby thecell cutting. It shouldbenotedthatthis final grid con-

tainsover49,000cells,whichcomparedto moststructuredgrid codes,is quite a large

numberof cellsfor thisparticularlysimplecase.Theinefficiencyincurredby theCarte-

sianapproachthroughits useof unit aspectratiocells is evident:For evenmoderateRey-

noldsnumberflows, it is quitenecessaryto usestretchedelements.
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Figure 4.53 Skin Friction for the Rotated Plate
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Figure 4.54 Skin Friction for the Rotated Plate, Close-up View
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Figure 4.55 Close-up of grid near wall
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For these results, the triangular-based reconstruction shown in section 4.1.3 is used to

compute the gradients at the walls for input to the viscous flux function and for computa-

tion of the skin friction. A more complicated procedure can be used which is less sensitive

to grid non-smoothness, but is also less robust. A function in u and v is expanded about the

body face Gauss point using basis functions that are identically zero at the Gauss points,

and a least-squares minimization procedure is used to find the unknown coefficients. In

practice, a linear expansion using only order-one neighbors to the boundary cell is found

to work best. The expansion is formulated as

u = ux¢l +%¢2

where the basis functions are linear, and vanish at the Gauss points

(4.27)

01 = x-xg t_2 = Y-Ye, (4.28)

Application of this procedure results in an improvement of the skin friction shown in Fig-

ure 4.56, but, a closer examination shown in Figure 4.57 indicates that there are still

severe oscillations due to the non-smoothness of the grid. Use of higher-order reconstruc-

tions and/or higher-order neighbors does not improve the results: The best are obtained

using, as expected, the lower-order expansion using the natural neighbors. Although there

are still severe oscillations, the change in basis function for the wall gradient reconstruc-

tion improved the behavior.
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Figure 4.56 Skin Friction Obtained using Linear Expansion, Final AMR Level
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Figure 4.57 Skin Friction Obtained using Linear Expansion, Close-up

As seen by inspecting the grid, there is more than adequate grid resolution near the

wall, and this resolution extends uniformly out into the boundary layer, where the refine-

ment boundaries are located sufficiently far away from the wall. The plots of the plate-nor-
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mal and plate-tangential velocities show that with sufficient resolution, the mean flow

quantities can be predicted accurately, but the irregularities of the grids inhibit smooth

derivatives of these quantities. All of the preceding analysis indicates that the current vis-

cous flux functions are highly sensitive to grid smoothness and orthogonality. This is

shown in practice to be a very important property, as in the axis-aligned flat plate where

there was no cell cutting but there were many cells with refinement boundaries located

deep inside the viscous layer. With cell cutting, the situation is more serious: Not only

must care be taken to ensure adequate and uniform resolution in high-gradient regions, but

the cell cutting introduces more irregularity into the grid, to which the viscous flux func-

tion is shown to be very sensitive. On a positive note, the Cartesian approach is shown to

give reasonable mean flow quantities, as is shown in the quality of the driven cavity, back

step, and flat plate results. The next case illustrates the utility of the Cartesian-cell

approach for the viscous flow through a complicated geometry.

4.2.5 Flow in a Branched Duct with Cooling Fins

A major advantage of using the Cartesian-cell approach is its ability to generate grids

about complicated geometries with minimal user intervention. The grid generation and the

flow computations with the adaptive mesh refinement of this case highlight this capability.

The geometry of this case corresponds to an experiment conducted in [70] which was

designed to simulate, in a simplified manner, the flow in the coohng passages of a turbine

blade. The flow passages inside turbine blades are extremely complex, with many protu-

berances and bends designed to decelerate the flow and enhance mixing with secondary

coolant flows. The flow is highly mixing dominated and usually at a low, yet turbulent,

Reynolds number. Due to the complexity of the domain and flow, it is extremely man-

power intensive to create a computational grid in the domain. As a further complication,

the flow is very difficult to compute, due to the turbulence levels and ambiguity of the

inflow and outflow conditions. The purpose of the branched-duct experiment is to elimi-
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natesome of these ambiguities by providing simplified geometry and flow conditions, but

still be representative of the complex flow processes that occur in the real turbine coolant

passages. Figure 4.58 shows a diagram of the branched duct geometry with arrows indi-

cating the flow directions.

Inflc

"Back

0 oO

w o o o Se
°o°

,,.. o o o tflo_o o Ou

14 Pin

Cooling Fins

Figure 4.58 Schematic of Branched Duct Flow and Geometry

In the actual turbine coolant passages, it is desired to slow the flow down to allow

increased beat transfer from the hot blade to the coolant flow. The pin fins accomplish this

by a deceleration of the flow downstream of the pins by providing an increased blockage

and mixing of the flow in the secondary passage. Since the flow is blocked through this

passage by the presence of the pin fins and their wakes, the primary flow is diverted

upwards, around the diverter and out the primary outflow exit. This geometry and flow

field has a few similarities with the backward facing step flow: There is a large recircula-

don zone aft of the sudden expansion, and additionally (as shown here and in the experi-

mental results [70]), a large separation zone just aft of the diverter plate, in the primary

flow passage.

The following calculation demonstrates the Cartesian-cell approach for this geometry, but
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in nowayattemptsto compute the flow at the test conditions. The test conditions are tur-

bulent while the conditions shown here are laminar, and only are used to demonstrate the

flow solver's current capability. Although the inclusion of a turbulence model is certainly

possible with the Cartesian-cell approach, it is not investigated here.

A fully-developed, laminar profile is provided at inflow while the pressure is set at the

outflow boundaries. No-slip boundary conditions are applied on the duct, splitter and pin

surfaces. Two different Reynolds numbers are computed which are chosen to provide a

low Reynolds number based on pin diameter and a low enough Mach number to preclude

compressibility effects. Both conditions are characterized by the maximum Mach number

in the inflow profile and the Reynolds number based on the pin diameter and maximum

inflow velocity. In terms of the pin Reynolds number, radius and inflow maximum Mach

number, the non-dimensionalizing Reynolds number is

R epi n
Re** - (4.29)

2M, orP in
1..

The lower Reynolds number calculation corresponds to Repi n = 25 and M_. = 0.1 while

the higher Reynolds number corresponds to Repi n = 100 and M** = 0.25. The dimen-

sions of the geometry, in centimeters, are shown in Figure 4.59 while the location and

radii of the pin fins are shown in Table XXI.



170

26.67

°°° T I0 0 0

l o o o 12.7Y o o o
o o 'r

Figure 4.59 Geometry of Branched Duct

Table XXI Pin Fin Locations and Radii

x (m) y(m) r(m)

0.114300 0.012700 0.004763

0.114300 0.038100 0.004763

0.114300 0.063500 0.004763

0.114300 0.088900 0.004763

0.114300 0.114300 0.004763

0.139700 0.025400 0.004763

0.139700 0.050800 0.004763

0.139700 0.076200 0.004763

0.139700 0.101600 0.004763

0.165100 0.012700 0.004763

0.165100 0.038100 0.004763

0.165100 0.063500 0.004763

0.165100 0.088900 0.004763

0.165100 0.114300 0.004763
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The base grid without viscous length scale geometric refinement, shown in Figure

4.60, was generated in 52 seconds on an IBM RS6000, model 560. This grid contains

3150 cells with one continuously represented outer body and 14 pin fins. A close-up of the

pin fin region is shown in Figure 4.61.

Figure 4.60 Branched Duct: Base Grid

_I__L J I I I

__+
I

m

Figure 4.61 Branched Duct: Base Grid: Close-up

Viscous-length-scale based geometric refinement is performed, where for the fully

developed inflow, the shear is specified from the parabolic velocity profile and is used in
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both theprimary andsecondarypassagesto providethegeometricscaling.Theviscous

scalingisperformedfor thepin finsalsoby usinga scalingwhich is basedon theBlasius

profilewith anarc-length-basedcoordinatewhoseorigin is atthe 0 = _ positiononeach

fin. Thebasegrid, shownin Figure4.62with aclose-upof thepin fin regionin Figure

4.63,has13,675cellsandwasgeneratedin 1445seconds.

Figure4.62ViscousLengthScaleBasedGrid, BaseRefinementLevel.
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Figure 4.63 Viscous Length Scale Based Grid, Base Refinement Level: Close-up of Pin
Fins.

Due to the non-robustness of the quadratic reconstruction procedures, the diamond-path
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reconstructionusingthelinearity-preservingweightingsis used.In addition,experience

fromtheprecedingcasesindicatesthatsettingthevertexweightsin thediamondpath

reconstructionto zerofor thecut cellsandtheir neighborsgivesa morerobustsolver.For

bothReynoldsnumbers,thesolutionswereconvergedonthebaseandfirst refinementlev-

els.Both Reynoldsnumbersdid not convergeon thesecondrefinementlevel, incurring

excessiveCourantnumbercutbacksuntil theCourantnumberwasbelow thecut-off

threshold.Eventhoughmanylevelsof refinementwerenot achievedfor thesecases,the

resultsshedlight ontothecharacteristicsof theflow fields.

First, the lowerReynolds-numbercaseis shown. Figure4.64and Figure4.65show

total-velocitycontourson thebasegrid level.The flow containsmanyrecirculation

regionsin additionto theobvious,largerecirculationzoneaft of thebackstep.Thedecel-

erationof theflow upstreamof thepin finscausesalargethickeningof theboundarylayer

aheadof thepins onthelowerwall, althoughtheflow remainsattached.Thereis amild

separationon theprimarypassagesideof thediverterplate.

Figure4.64Low ReynoldsNumberBranchedDuctCase:BaseRefinementLevel,
TotalVelocityContours:Min=0,Max=0.1945,Increment=0.005
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\

Figure 4.65 Low Reynolds Number Branched Duct Case: Base Refinement Level,
Close-up of Pin Region, Total Velocity Contours

Solution adaptive mesh refinement improves the quality of the solution. Figure 4.66

shows contours of the total velocity, and Figure 4.67 shows the adapted grid. Line plots of

the u velocity at different streamwise locations are shown in Figure 4.69 to Figure 4.75.

Figure 4.66 Total velocity Contours, Low Reynolds Number Case, Final Refinement
Level: Min=0, Max=0.1368, Increment=0.005.
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Figure4.67Final AdaptedGrid, Low ReynoldsNumberCase

Figure4.68ParticleTraces: Low Reynolds Number Case, Final Refinement Level
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Figure 4.69 u-velocity at x=.05 meters (Ahead of Pins)
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Figure 4.70 u-velocity at x--0.127 meters (Behind First Pin Row)
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Figure 4.72 u-velocity at x=0.1794 meters (Behind Final Pin Row)
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Figure 4.73 u-velocity at x--0.2 meters (Downstream of Pins)
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Figure 4.75 u-velocity at x--0.1794 meters (Behind Final Pin Row)

As seen in the velocity upstream of the pins, there is a substantial upstream influence of

the pin fins which diverts much of the flow into the upper passage. The velocity-deficit

region upstream of the pins is quite large, as shown in Figure 4.69 and is approaching sep-

aration at x=0.05 meters. The wakes of the individual pins are discerned in the plots

located inside of the pin regions, but are seen to dissipate quickly due to the coarse grids in

the wake regions. The flow above the diverter plate shows the recirculation zone aft of the

diverter leading edge for the final refinement level, which does not show up at the base

grid level. In addition, far downstream of the pins, the primary and secondary flows are

approaching a fully-developed profile, where the primary flow has approximately three

times the mass flow as the secondary flow. The adaptive mesh refinement has increased

the quality of the solution.

The higher Reynolds number case exhibits many of the same phenomena, but has a few

particulars of the flow that are different from the lower Reynolds number case. The

upstream influence from the pins causes a mild separation zone on the lower wall, ahead

of the pins, which did not occur in the lower Reynolds number case. The wakes behind the
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pinsarethinnerandextendfartherdownstreambeforebeingdissipated.Importantly,due

to thethinnerviscouslayersin thepin region,thepinsblock lessof theflow, andbecause

of this,theflow far downstreamshowsthatthemassflow in theupperchannelis approxi-

matelytwice thatin the lower flow.Theseparationzoneaft of thesuddenexpansionis

larger,andtherecirculationzoneontheuppersideof thediverterplate,just aft of the lead-

ing edge,extendsfartherdownstreamandis largerin thetransversedirectionalso,dueto

theincreasemeanvelocity of the inflow. Theupperwall in theupperchannelexhibitsa

separationzonecausedby theadversepressuregradientfrom thereattachrnentof the

lowerrecirculationzone.Again,theadaptivemeshrefinementimprovedthequality of the

solutionautomatically.Contoursof theu-velocityareshownin Figure4.76and Figure

4.77.Particletracesaxeshownin Figure4.78while lineplotsof theu-velocityatthesame

selectedaxial locationsasthepreviouscaseareshownin Figure4.79to Figure4.84.
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Figure 4.76 Total-velocity Contours, Final Refinement Level, High Re Case. Min=0.0,
Max--0.316, Increment=0.010.

Figure 4.77 u-velocity Contours, Final Refinement Level, High Re Case



182

Figure 4.78 Particle Traces, High Reynolds Number Case, Final Refinement Level
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Figure 4.79 u-velocity at x---0.05 meters, High Reynolds Number Case
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CHAPTER V

Level Distance Line Cutting and Stencil
Creation with the Cartesian-Cell

Approach

The very nature of the isotropic grids that the Cartesian-ceU approach generates makes

it unsuitable for computing high Reynolds number flows. The anisotropy of the length

scales in a viscous layer requires that for reasonable resolution stretched cells must be

used. This comes about from both an accuracy and an efficiency standpoint. From the

analysis shown in Chapter III, the linearity-preserving schemes have a truncation error

which varies inversely with the cell aspect ratio. This indicates that for grids which have

the same sufficiently smooth stretching, the high aspect-ratio cells will have a lower trun-

cation error. More importantly, isotropic refinement of the Cartesian cells to resolve gradi-

ents in the primary shear direction will unnecessarily refine cells in the streamwise

direction. For a higher Reynolds number laminar flow this is a tremendous waste of cells,

since the two length scales will differ by a factor of R_ . The situation gets even worse

for turbulent flows, where typical turbulence models require resolution of the laminar sub-

layer. For the Cartesian approach, the use of a stretched, or non-unit aspect ratio, root cell

can help alleviate the problem, but only for cases where the viscous layers are aligned with

one of the coordinate axes. Since this in general can not be true, some means of creating

body-aligned meshes must be found for the Cartesian, cell-based approach to be used for

high Reynolds number applications.

One possible avenue to pursue would be to be resigned to the fact that the current vis-

cous flux functions can't handle the grid non-smoothness and non-orthogonality well, and

use body-fitted or prismatic meshes near no-slip boundaries. This is certainly a valid

approach, and has led to what is currently being termed the hybrid-grid approach. The

186
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term hybrid implicitly suggests that two types of grids are used, body-fitted-like grids near

bodies and unstructured grids to fill the voids created between the body-fitted grids. Since

the Cartesian approach can be viewed as a unstructured grid approach also, it too can be

used to create a volume grid outside of the local body-fitted grids. This has been pursued

by Melton et. al. in [54] where the Cartesian-grid approach was mated with a prismatic

grid generator. In addition, a Cartesian-based approach was also investigated in the same

light, for a hybrid grid approach, by Ward et. al in [86]. For completeness, a hybrid grid

generated using the Cartesian, cell-based scheme presented in this thesis is shown in Fig-

u_re 5.1 and Figure 5.2 for the fourteen pin fins of the branched duct geometry. The pin

body-fitted grids were generated using an elliptic O-mesh generator that uses a mesh clus-

tering algorithm in the radial direction. The outer boundaries of the pin meshes were input

as bodies to the Cartesian grid generator, which automatically created the volume grid in

the void between the body-fitted meshes. Although the grid is non-smooth near the outer

boundaries of the body-fitted grids, this could be alleviated by better smoothness criterion

for the Cartesian generator.

I

Figure 5.1 Example hybrid Cartesian/Body-Fitted mesh for the pin
fin geometry.
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Figure5.2Close-upof Pin Region

This chapter investigates a new grid-generation procedure that is based upon the Carte-

sian-cell approach. Locally body-aligned cells are generated through a procedure called

level-distance line cutting. This approach creates high aspect ratio cells near bodies by

cutting faces out of the background mesh which correspond to iso-distance lines from the

nearest no-slip surfaces. Near the body, the grids look much like a body fitted or collar

grid, since, by construction, a stretching in the distance lines is easily specified. A conse-

quence of this distance-cutting procedure is a well resolved, but extremely non-smooth,

grid. As shown analytically in Chapter Ill and in practice in chapter IV, non-smooth grids

can wreak havoc upon the current viscous flux functions in use today. In an attempt to alle-

viate this problem, a non-conservative procedure for the viscous terms in the Navier-

Stokes equations is proposed. It is envisaged to solve the Navier-Stokes equations upon

the distance-cut grids using this procedure, but the approach is only outlined here and

demonstrated for a model equation. The heart of the procedure is the creation of a stencil

from a given set of support cells. Two methods are used, if necessary, to create the sten-

cils: one is based upon a linear solution of equations which yields a desired level of accu-

racy, but cannot guarantee positivity; the other is based upon using a quadratic
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programmingapproach,which findsthestencilby satisfyinga setof equalityconstraints

(to createthestencilto adesiredaccuracy)anda setof inequalityconstraints(to ensure

positivity of thestencil)by minimizing aquadraticobjectivefunction.Thischapterout-

linesanddemonstratesthegrid-generationanddescribesthestencil-creationapproaches.

5.1 Level Distance Line Cutting

This procedure is automated, once suitable stretching parameters are specified, and

comprises two stages. The first stage of the procedure generates a Cartesian mesh suitable

for an Euler calculation, based upon the grid-generation procedures outlined in appendix

A and demonstrated in the preceding Chapters. The next stage finds, for each vertex in the

mesh, the minimum distance to all no-slip surfaces. The minimum distance to all no-slip

surfaces is found using a recursive bisection method for each surface definition segment

on the no-slip surfaces. By defining a suitable stretching function in this distance coordi-

nate, and a maximum distance to stretch to, stretched lines of constant distance from the

body are identified, and are used to "cut" any cells which have faces that span this particu-

lar distance line. Figure 5.3 illustrates the cutting by showing a close-up of a coarse dis-

tance-function grid near the surface of a circular cylinder. In this Figure, two distance lines

have been cut. Figure 5.4 shows the same view after more distance lines have been cut.

This iso-distance cutting proceeds over all distance lines, which are determined by the

stretching function, resulting in a mesh in which one can discern the background Cartesian

grid, but is actually composed of many N-sided, non-Cartesian cells.
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/I
Figure 5.3 Two Level Distance Line Cut Grid Near Circular Cylinder

Figure 5.4 Distance Cut Mesh For Circular Cylinder with 11 Stretched, Distance Lines
Cut
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Eachcell is split into two cells,wherebothof thenewcells shareafacewhich is aligned

with the iso-distancelevel.Thecreationof two cellsby splittingasinglecell is easilyhan-

dledby thebinarytree.

Thecuttingprocedureis straightforwardto implementwith thebinarytreedatastruc-

ture.For agiveniso-lineto cut,eachcell is visited,andeachfaceisexaminedto seeif this

distanceline is containedwithin theface.If a facecontainsthisdistanceline, the location

of the line in thefaceis foundby linearinterpolationbetweenthetwo vertices.Oncethe

two intersectionswith thecell havebeenfound,eachvertexof thecell is visited,andby

comparisonto thedistanceline, arefoundto lie oneithersideof the iso-distanceface.

This is usedto createa list of nodesthatcomprisestheverticesdescribingeachcell. The

treeis split below theparentcell, andbothcut cellsarenow situatedbelow thebranch,as

illustratedin Figure5.5,wherecellA, originally comprisedof four verticesv0, vl, v2and

v3, issplit into two cells,B andC. CellB is describedby theverticesvl, v2, v3 v5 andv4,

while cell C is describedby v4, v5 andv0. Thenewverticescreatedby thedistancecut-

ring,v4 andv5, arefoundby linear interpolationbetweenthetwo existingverticessub-

tendingthefacewherethedistanceline is to becut.
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v2 vl v2 vl
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v3 v0 v3 v5

A A

B C

Figure 5.5 Illustration of Distance Cell Cutting Procedure

v4

v0

The iso-distance cutting procedure routinely generates cells interior to the mesh that

have a many magnitude variation of cell area across cell faces. In many cases, the worst

area variations come about when the iso-distance line comes extremely close to a vertex of

the background Cartesian mesh. When this type of grid non-smoothness occurs, it can be

eliminated by moving the distance line to the vertex of the background mesh, and elimi-

nating the small cell. This is illustrated in Figure 5.6, where the small triangular cell that

is created with a vertex of the background mesh, v0, and the distance line 8lift is elimi-

nated by moving the distance line to the vertex, and pruning the triangular cell from the

tree. This procedure is termed iso-line lifting, since it "lifts" the iso-distance line to the

vertex of the background, Cartesian mesh.
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Figure 5.6 Iso-line Lifting to Eliminate Small Triangular Cells

Although this helps with the mesh smoothness, there are still many instances where

extremely large variations in cell sizes across the faces can occur, which as shown in pre-

vious sections, can lead to extremely inaccurate and non-positive stencils. Indeed, as

shown analytically and in practice, even a two-to-one variation in cell size can lead to seri-

ous inconsistencies in the viscous terms. In addition, the geometry of the cell-to cell inter-

actions becomes extremely important, as it is best to keep the centroid-to-centroid lines

nearly perpendicular to the faces. For many of the cells created by the distance cutting, all

of these important properties are clearly violated.

There are only a few alternatives available, of which none are too attractive. One alter-

native is to stick with the current state of affairs of the viscous flux construction, and to try

to smooth or modify the grid so that accurate stencils can be created. This avenue then

implies a geometric way out of the problem, by moving mesh points and cells until some

suitable criteria of grid smoothness based upon the accuracy of the stencil is achieved. The

other approach would be to try to live with the grid non-smoothness, and create stencils

which can handle the irregularities. The geometric approach is greatly hindered by the
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inaccuracies inherent in the current viscous flux functions. Indeed, the current flux func-

tions have been shown to give extremely poor results for model equations on distorted

grids [37][67land [26]. As shown here and backed up by the results in [37] and [67], the

current classes of viscous flux functions are extremely sensitive to grid smoothness and

are highly dependent upon geometric cancellations to obtain accuracy and consistency.

More importantly, positivity has been shown to be extremely difficult to maintain on even

the mildly non-smooth grids obtained through the isotropic cell refinement. When consid-

ering the non-isotropic nature of the grids obtained with the distance cutting procedures, it

is highly unlikely that a robust and conservative procedure will be found. This is true in

practice, as will be shown in a subsequent section. The alternative approach is to create a

stencil which is both positive and accurate. The next section outlines a procedure that

attempts to satisfy these two competing requirements.

5.2 Stencil Creation

The stencils created using a conservative flux formulation are found by first recon-

structing gradients at the cell interfaces, and then performing a line integral about the cell

to obtain the desired terms in the governing equation. A given reconstruction technique is

analyzed by using the procedure to solve a model equation, in this case Laplace's, and

then performing a Taylor series analysis using the created stencil. So, it is seen that the

way a particular scheme is measured for quality is disconnected from the way the stencil is

created: by reconstructing the gradients at the faces and then performing the line integral,

the contributions of cells to the stencil are greatly complicated. Accuracy and positivity

are a desired outcome of the stencil, but are not used explicitly to create the stencH.

The procedures outlined here discard the conservation property and attempt to create sten-

cils which by construction satisfy positivity and/or accuracy. The accuracy and positivity

conditions are well defined, although difficult to obtain. Accuracy is gauged by a local
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Taylor series expansion. Reiterating the accuracy and positivity constraints explained in

Chapter III, consider a discrete approximation to Laplace's equation with a set of N sup-

port cells as

V2u=L(u)

Positivity is guaranteed if a o < 0 and a n

N

= _., a u,, = 0 (5.1)
n=0

> 0 for all n = 1, N. Accuracy is measured from

a Taylor series expansion about the object cell as

, n _-x + (_, anrln) N + 2 Ox 2 "'"

where _n = Xn - Xo and 1"1n = Yn - Yo • For the discrete approximation to be accurate,

the grouped terms in the above equations comprise a set of linear relations

_ot n = 0 (5.3)

___an{,, = 0 (5.4)
n

= 0 (5.5)

Zan_2n -" 2 (5.6)

= o (5.7)

_.an'q2n = 2 (5.8)

_a_3n = 0 (5.9)
/2

2
_a_ 11,, = 0 (5.10)

Zan_nrl2n = 0 (5.11)
n
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Zanrl3n = 0 (5.12)
n

A first-order accurate stencil will satisfy six equality constraints, (5.3) to (5.8), while a

second-order accurate stencil must satisfy ten, (5.3)to (5.12).

5.2.1 An Accuracy-Preserving Laplacian

This technique expands upon the ideas presented for the linearity-preserving Laplacian

developed by Holmes and ConneU in [35]. Their approach is shown here to be a special

case of this technique. A discrete approximation to Laplace's equation is formulated as

N

L(u) = _._ to (u_-u o)
n=l

The Taylor series approximation is expanded out to be

(5.13)

L (u) = [_.ton (Uo- Uo) ] + [_.ton (Xn- Xo) l ux

[Zton (Yn-YO) ]Uy + [Zton(Xn-Xo) 2] uxxT + (5.14)

[_., ton (xn - Xo) (Yn- YO) ] Uxy + [Zton (Yn - YO) 21 Uyy--_-- + ...

Each of the square bracketed terms can be considered to be the discrete Laplacian applied

to a different function. That is

L(1) = 0 (5.15)

L(x) = 0 (5.16)

L(y) = 0 (5.17)

L(x 2) = 2 (5.18)

L(xy) = 0 (5.19)
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L (y2) = 2

L(x 3) = 0

L (x2y) = 0

L (xy 2) = 0

L (y3) = 0

If the Laplacian weights are expanded about unity as

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

03
?i

= 1 + kx (Xn - Xo) + _'y (Yn - YO) + 'gx (Xn - Xo) 2 +

a (Xn - x o) (Yn - YO) + Yy(Yn -- YO) 2 +

81 (Xn-XO) 3+ 52 (xn-Xo)2(yn-YO) +

83 (Xn - Xo) (Yn - YO) 2 + 54 (Yn - YO) 3

(5.25)

then a linear system results for the coefficients in (5.25). If the expansion of {on is formu-

lated as

03n = 1 + _.x_b1 + _'y¢_2 + Tx_3 + a_4 + Ty¢5 +""

then the linear system is Ax=s-b, where

(5.26)

AO= 2% (5.27)

X = (_x,_y, Yx, lX, Ty,'_l,_2,_3,_)4 )T

b, = 2ooi

For Laplace's equation the vector s is

s = (0,0,2,0,2,0,0,0,0)

(5.28)

(5.29)

(5.3o)

Second-order accuracy can be obtained by solving the full system, or lesser accuracy by

reducing the number of unknowns. A first-order accurate Laplacian can be obtained by
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solving for thefirst five unknowns,andazeroth-orderLaplacian,correspondingto the lin-

earitypreservingLaplaciandevelopedby [35], is foundby only solvingfor thefirst two

unknownsin theexpansion.This techniquecanbeapplied,in principle,for solvingarbi-

trary PDE'swheretheconstantvectorsis replacedby thecorrectcoefficientscorrespond-

ing to thedesiredpde.

Applicationof this approachto themodelgridsanalyzedin chapterIII resultsin some

very interestingstencils.First,applyingthezeroth-,first-, andsecond-orderaccuracypre-

servingLaplaciansto theuniformgrid resultsin thefollowing stencils.

1
L(u) = --

h 2

1

1

-8

1

1

= 3V2u +

h 2

--_ ( Uxxxx + 4Uxxyy "!" Uyyyy)

Figure 5.7 Stencil for Zeroth-order ("Linearity Preserving") Laplacian: Uniform Grid
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1
L(u) -

5h 2

1

3

3

-16

3

3

1

= V2u+

h 2

-_ ( 5Uxxxx + 12Uxxrr + 5Uyyyy)

Figure 5.8 Stencil for First-order and Second-order preserving Laplacian: Uniform
Grid

The stencil obtained for the linearity preserving Laplacian is horribly inconsistent, as

expected, while the first- and second-order Laplacians are both second-order accurate, and

can be viewed as a linear combination of two second-order accurate stencils. If the stan-

dard Laplacian is termed Lst and the rotated Laplacian Lro t, then the stencil created using

this procedure is the linear combination

3 2
L = _Lst+ 5Lrot (5.31)

For the East face refined grid, application of the zeroth-, first- and second-order accuracy

preserving Laplacian procedure results in the following stencils.
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L(u)
1

u

49 h2

53 49

53 -439

53 49

45

46 0

46 0

45

1

392 (1199Uxx + 1203Uyy) +

.-23 + 187 ,
h {,"_"_Uxx x -1-'_Uxyy) +..

Figure 5.9 Zeroth-order Accurate Stencil for East Refined Grid

1
L(u) -

6751 h 2

1697 4272

4176 -25868

1697 4272

509

4368 0

4365 0

509

-- V2u+

h
(- 191 lUxx x - 3933Uxyy) +.

Figure 5.10 First-order Accurate Stencil for East Refined Grid
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L(u) = __1.
h 2

1/2 0

0 -2

1/2 0

1/2

0 0

0 0

1/2

= V2U+

O(h2)+...

Figure 5.11 Second-order Accurate Stencil for East Refined Grid

The truncation error of the stencils behaves as expected, but the weights are not ones

which are so obvious. Quite unfortunately, the rotated Laplacian appears for the second-

order stencil. This is unfortunate since this configuration is one to avoid as it allows the

development of decoupled solutions. Although none of the stencils shown here are non-

positive, there is no mechanism to preclude non-positive stencils from being created. This

turns out to be true in practice, but on many grid topologies, this procedure alone is suffi-

cient. For those where positivity is not achievable, the following approach is a valid,

though costly, alternative.

5.2.2 A Quadratic-Programming Approach to Stencil Creation

The approach here is to use a quadratic-programming method to solve the linear equal-

ity conditions (5.3) to (5.12) subject to a set of inequality conditions, namely positivity.

Since the development of an efficient quadratic-programming solver is beyond the scope

of this thesis, a packaged solver is used instead. The particular solver was obtained from

the Internet, and is called DONLP for Do Non-Linear Programming[74]. The objective

function is quite arbitrary, and here it is chosen to minimize the sum of the squares of all

non-face neighbors to the cell in question. This choice of objective function returns the
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desiredstandardLaplacianona uniformgrid andgivesreasonableresultsin practice.For

theEastfacerefinedgrid, thestencilweightsobtainedareshownin Figure5.12.The

resultingmodifiedequationis

L (u) = V 2 u + (-O.O155Uxx x + 0.0118Uxyy ) h 2 +... (5.32)

L(u) = __1"
h 2

.4017

.2231

.4017

.1825

-2.489

.1825

.4069

.4069

Figure 5.12 Second-order Accurate Stencil for East Refined Grid: Quadratic
Programming Approach

This approach is in no ways optimal. There appear to be many objective functions that

one may choose to minimize that will give different stencil weights. Indeed, the quadratic

programming approach might not be the most efficient means to solve the constraints. The

approach shown here is only a demonstration of the concept and is only a small step

towards a more complete methodology.



CHAPTER VI

Concluding Remarks

6.1 Summary

In this thesis a Cartesian, cell-based scheme has been presented which solves the com-

pressible Euler and Navier-Stokes equations using a cell-centered, upwind, finite-volume

approach. The equations have been solved in conservation-law form upon an unstructured

network of cells which were created using a Cartesian, cell-based grid-generation proce-

dure. This method used a recursive subdivision of unit aspect ratio (Cartesian) cells creat-

ing arbitrarily shaped polygons when the Cartesian cells straddle a boundary, using a

modified polygon clipping algorithm. The grid has been stored in a hierarchical data struc-

ture; a binary data tree. Storage of the grid in this data structure allows solution-adaptive

mesh refinement by performing pruning and growth operations upon the tree branches and

allows cell-to-cell connectivity to be inferred by a logical traversal of the tree. The grid-

generation process is automatic, once suitable representations of the boundary surfaces are

defined, and is able to produce volume grids about complicated geometries with minimal

user intervention.

The Euler and Navier-Stokes equations have been solved in conservation law form

using a finite-volume formulation. The convective terms were treated in an upwinded

manner: A gradient-limited, linear reconstruction of the primitive variables in each cell

was performed which provides input states to an approximate Riernann solver at each cell-

to-ceU interface. The semi-discrete form of the equations were solved using an explicit,

multi-stage scheme with a spatially varying time step. The Euler solver was validated and

its accuracy critically assessed by comparison to accepted computational results and to an

exact solution of the Euler equations.

An analytical assessment of six conservative, viscous flux functions suitable for use

203
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with the Cartesian, cell-based solver has been made. All of the schemes reconstructed gra-

dients of the primitive variables at the cell interfaces. Four of the viscous flux schemes

were based upon an application of the divergence theorem to a co-volume surrounding the

face. These schemes were termed as Green-Gauss type reconstructions and were delin-

eated by the co-volumes used and the means of obtaining the data at the co-volume verti-

ces. The two remaining schemes were based upon reconstructing either a linear or

quadratic polynomial at the interfaces, and differentiating the polynomial to obtain the

gradients. This assessment compared the candidate schemes by solving a model equation

of the viscous terms, Laplace's equation, using the candidate flux functions upon some

grid topologies representative of those that may be obtained using the Cartesian approach.

The stencils created by these flux functions were assessed for accuracy (by local Taylor

series expansion), and for positivity (by examination of the stencil coefficients).

Two of the Green-Gauss type schemes were shown to yield decoupled stencils upon

uniform and non-uniform Cartesian grids. The two remaining Green-Gauss schemes used

identical co-volumes, but differed by the means of obtaining the data at the vertices of the

co-volume. The simplest approach, using a unity weighting, was shown to be highly inac-

curate, giving stencils with a leading truncation error term that varied inversely with the

cell size, precluding grid convergence. The Green-Gauss approach using a linearity-pre-

serving weighting was shown to be inconsistent upon arbitrary meshes. The linear, poly-

nomial-based reconstruction was shown to exhibit the same general behavior as the

linearity-preserving Green-Gauss reconstruction. The quadratic, polynomial-based recon-

struction approach was shown to be the only scheme able to give consistent, first-order

accurate stencils upon arbitrarily distorted meshes. A complete Taylor series analysis

using a conservative type of reconstruction of gradients at the cell interfaces also showed

that a quadratic reconstruction is the only means of obtaining a first-order accurate stencil

upon arbitrarily distorted meshes. From the discrete analysis, all of the schemes were

shown to have a tendency to yield non-positive stencils.
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Thetwo bestreconstructionschemeswereused to compute adaptively-refined solu-

tions to the Navier-stokes equations for a series of low and moderate Reynolds number

flows. The results computed using the two reconstruction schemes were compared to each

other, to theory, to accepted computational results and to experiment. Both schemes were

shown to give excellent results when sufficiently resolved and smoothed grids were used.

A means of obtaining discrete Taylor-series expansions for the stencils created by each of

the schemes was presented and used to compare the quality of the stencils created by the

two approaches. For the Cartesian-generated grids, both methods yielded nearly identical

results, as was indicated by the discrete analysis, and was directly attributed to the geo-

metric quality of the grids obtained using the Cartesian-based cells. Neither scheme, with-

out modification, could yield positive stencils upon all of the grids, and for arbitrary cut

grids this non-positivity inhibited convergence. The quadratic scheme was shown to give

fewer non-positive stencils than the Green-Gauss type scheme, but was also shown to give

ceils with the largest magnitude of non-positivity. Although more non-positive stencils

were created with the Green-Gauss scheme, these stencils were less non-positive than the

quadratic approach, making the linearity-preserving Green-Gauss type of reconstruction

the most robust.

It was shown that with sufficiently resolved grids, excellent quality results of the mean

flow quantities could be obtained, but derivative quantities of the computed results were

extremely non-smooth, and very sensitive to grid quality. This made the skin-friction

obtained from most calculations extremely oscillatory and for the most part, unusable.

Although smooth mean flow results could be obtained, a better means of treating cut cells

and of computing the derivative quantities upon them is still lacking. This is directly

attributed to the state of the art of the computation of the viscous flux terms in the Navier-

Stokes equations, and is a pacing item for other unstructured grid based approaches, in

addition to the Cartesian approach.

An obvious drawback to the Cartesian approach is its inadequacy in treating high Rey-
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nolds number flows. For a high Reynolds number flow, stretched grids must be used from

both an accuracy and an efficiency standpoint. Since the Cartesian approach uses unit

aspect-ratio cells, application of the Cartesian approach to a high Reynolds number flow is

extremely computationally inefficient. Two alternatives, both based on the Cartesian

approach, were presented. One was based upon using a hybrid Cartesian/body-fitted mesh

approach. This essentially tries to accommodate the smoothness and orthogonality

requirements needed by the current viscous flux formulae, creating locally body-fitted

meshes near the bodies. This would be a valid short term solution, in that more emphasis

is placed upon the grid generation, and uses the currently available viscous flux formulae.

A drawback of this approach is that the grid generation process is no longer automatic,

requiting the generation of the local body-fitted meshes. An alternative method was pre-

sented which still retained the autonomy of the grid generation procedure, but places an

extreme strain on the viscous flux construction. This method was based upon the construc-

tion of locally- aligned cell faces by cutting iso-distance lines from the bodies out of the

mesh. This approach created extremely non-smooth grids, which have been shown to be

very poor from both an accuracy and positivity standpoint using current viscous flux for-

mulae. Due to this, a non-conservative method was presented and only minimally tested,

based upon a stencil creation procedure using both a linear method and quadratic-optimi-

zation approach. The linearity-preserving Laplacian weighting of [35] was shown to be a

subset of this approach.

In sumraary, the Cartesian, cell-based approach has been shown here to provide adap-

tively-refined solutions to the Navier-Stokes equations upon automatically generated

grids. The mesh refinement was shown to improve the solution quality, also in an auto-

mated fashion. This demonstrated a new method, where adaptively-refined solutions to the

Navier-Stokes equations can be obtained upon complex domains with minimal user inter-

vention. A series of cell-centered, viscous flux formulae have been investigated for use in

the Cartesian, cell-based scheme. The assessments were made analytically, with specific
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focus paid upon the accuracy and positivity of the schemes when used to construct dis-

crete Laplacian operators. Two flux functions, representative of linearity- and quadratic-

preserving reconstructions schemes, were used to compute adaptively-refined solutions of

the Navier-Stokes equations. The linearity preserving scheme was shown in practice, and

by analysis, to be the more robust of the schemes. Neither scheme could guarantee positiv-

ity of the viscous operators, which inhibited convergence and decreased the overall

robustness of the solver. Regardless of this comparatively negative finding, the approach

can yield excellent solutions, and has been demonstrated to provide automatically gener-

ated solutions to the Navier-Stokes equations for complex domains at low and moderate

Reynolds numbers.

6.2 Concluding Remarks

The bulk of this thesis, that is Chapters III, IV and V, sheds light upon a recurrent strug-

gle apparent in all modem numerical methods for conservations laws: the close coupling

of the numerical scheme to the geometric qualities of the conservation volumes. This close

coupling is tested to an extreme by the very nature of the Cartesian-based grid generation

and the adaptive-mesh refinement. This thesis has shown how difficult it is to attain both

accurate and positive viscous flux functions on arbitrary grids, and has illustrated how dif-

ficult this dichotomy, grid smoothness opposing flux accuracy, is to overcome. This

dichotomy is one that is inherent in all modem methods, both structured and unstructured.

The success of the structured grid based approach is directly tied to the quality of the grids

that can be attained coupled with the simplicity of the flux functions used upon them. Tra-

ditional unstructured mesh schemes suffer from similar constraints, also testing the cou-

pling between the numerics and grid smoothness. Both approaches have placed positivity

of the operators at a higher priority than accuracy. This sacrifice of accuracy can still yield

useful trends, as long as the grids used are not too non-smooth, which, unfortuneately, can

be very problem dependent.
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The Cartesian approach presented here severely tests the limits of these constraints.

The automation of the grid generation has come at the cost of grid smoothness. For the

inviscid portion of the scheme, this non-smoothness is not as crucial, due to the decou-

piing of the reconstruction process from the grid structure, and the use of a spatially vary-

ing time step. But, here it is shown that it is very difficult to attain both an accurate and

positive viscous operator on the comparatively smooth irregularities induced across

refinement boundaries, let alone the extreme non-smoothness induced by cell cutting. For

a high Reynolds number flow, the non-positivity of the viscous operator, induced by the

grid non-smoothness, might not be as apparent. This is a deceptive, and possibly danger-

ous, scenario. Although an overall positivity preserving operator might be attained, the

non-positivity of the viscous operator can be masked by the inviscid operator, clearly vio-

lating the important, physically based, positivity property of the viscous terms that must

be maintained. Unfortunately, application of the Cartesian approach to high Reynolds

number flows is an extremely inefficient proposition, due to the isotropic nature of the

grids, so even this somewhat tainted saving grace can't come to its rescue. The best hope

for a robust and accurate Cartesian, cell-based approach for computing viscous flows is a

radically new treatment of the viscous terms, perhaps following that outlined in Chapter V.

6.3 Recommended Future Efforts

Firstly, the inadequacy of the viscous flux formulae for generally distorted grids must

be addressed. The current flux formulae require a smooth grid to get reasonable solutions.

If this smoothness constraint could be lifted, the grid-generation process could be greatly

simplified. Even though the resulting flux formulae might be more expensive to evaluate

and store, the gains in simplicity of mesh generation could far outweigh the extra costs

incurred. Work in this area could have a wide reaching impact, as improvement in the flux

formulae could be used by many already-developed solvers, both structured and unstruc-

tured.
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For the Cartesian, cell-based approach, probably the most pressing need is the develop-

ment of a three-dimensional upwind-based inviscid flow solver. This is crucially depen-

dent upon development of a common three-dimensional grid generator. As in the work

completed for this thesis, the development of a robust grid-generation procedure for arbi-

trary geometries is most certainly not a trivial task, but is one that can have a great payoff.

Current work is underway developing a NURBS-based Cartesian grid generator, and

should provide a common, publicly available Cartesian-cell grid-generation capability.

Due to the relatively large (two-to-one) change in cell size across refinement boundaries

and the intractably large changes near cut-cell boundaries, a more complex and robust vis-

cous flux function will be needed. If a new flux function is not created, a hybrid Cartesian/

body-fitted approach is a viable alternative, provided a suitable smoothness is maintained

across the body-fitted to Cartesian interfaces.

Extension of the Cartesian based approach to solving other important problems in com-

putational physics, such as acoustics and electromagnetics and radiation should prove use-

ful. As with any flow solver, this approach can readily be extended to reacting and

turbulent flows. Regardless of the equation set being solved, if the isotropic resolution of

disparate length scales for solutions in and about complicated domains is desired, the Car-

tesian-cell based approach is a valuable and viable tool that can be applied. It is shown

here to be able to provide automatically-generated and grid-refined solutions for the

Navier-Stokes equations for both complex flows and geometries.
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Appendix A

Cartesian, Cell-Based Grid Generation

Using a Polygon Clipping Algorithm

The basic idea behind the Cartesian, cell-based grid generation approach is to create

arbitrarily shaped cells wherever Cartesian cells from the background mesh are intersected

by a boundary of the domain. The domain may consist of an arbitrary number of closed

surfaces which may be described functionally and whose orientation of control points

implicitly determines the location of the computational domain. The non-Cartesian cells

which are created by the grid generation procedure are termed cut cells since they can be

viewed as being Cartesian cells which are "cut" out of the background mesh by the bound-

ary. The robustness of the procedure used to create the cut cells rises to extreme impor-

tance: If a single boundary/cell topology fails to create the proper cut cell, the entire mesh

is unusable. This is further complicated by the fact that many of the boundaries may con-

tain discontinuities in slope and in many cases, non-convex cut cells must be created.

Since the flow solution approach solves conservation laws in all cells in the domain by

performing a second- or higher-order reconstruction followed by a flux quadrature over

the cell edges, the outcome of the cell cutting procedure must be a list of vertices or edges

which describe the cut cells, yielding the quadrature points and edge lengths.

The cell cutting procedures implemented for this work have consisted of two separate

approaches. The first approach used was based upon creating a list of vertices describing

the cut cell from the vertices of the Cartesian cell and the intersections of this cell with the

boundary. Each Cartesian cell vertex was examined for locality by determining whether

the vertex is located inside, on, or outside of the body, and based on this locality deciding
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if it should be added to the list of vertices which describe the cut cell. This list of vertices

is then ordered in a counterclockwise manner about a mean point of the cell. From this list,

the cell centroid and cell edge quadrature points are easily found. This approach works

well when convex cells need to be created and when it is unnecessary to preserve discon-

tinuous breaks in the geometry. But, situations where there are discontinuities in slope on

the bodies occur quite regularly, and it is necessary to correctly preserve these breaks in

the surfaces to properly model the flow. A more robust and applicable cell cutting proce-

dure is implemented here which is based upon the concept of polygon clipping, taking

advantage of the convexity of the Cartesian cell and using many procedures developed in

the computational graphics field. This procedure preserves all breaks in the bodies and in

practice proves to be a more robust procedure than the former, locality based approach.

Indeed, as can be seen from the following analysis, the former method can be viewed as a

simpler polygon clipping algorithm.

The concepts behind polygon clipping are simple: Polygon clipping performs a Bool-

ean operation on a set of polygons, retuming a list of vertices describing polygon(s) that

result from the desired operator. The more complicated clipping algorithms are able to

return multiple polygons from the Boolean operations upon convex and non-convex poly-

gons that may contain holes and coincident edges.
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Clipping Polygon

Clipping Procedure

Figure A. 1 Boolean and Operation using a Polygon Clipping Algoritl_

The polygon clipping algorithm used here is based upon the clipper proposed by Suth-

erland and Hedgman [76], and is one of the more simple clippers in that it requires the

clipping polygon to be convex and will only return one polygon from the operation. In

addition, without modification, this algorithm only returns the logical and of the clipping.

The procedure takes a subject polygon and "clips" it against a convex clipping poly-

gon, which returns the logical and of the two regions ( Figure A.1). The clipping is per-

formed on an edge by edge basis of the clipping polygon, and determines if vertices of the

subject polygon lie logically to the left or right of the clipping edge, creating a new poly-

gon from the points on the left and the intersections of the current subject edge with the

clipping edge. The subject polygon resulting from clipping against the previous edge is

used in the clipping against the next edge, until there are no edges left which must be

clipped, yielding the desired polygon. The subject and clipping polygons are positively

ordered in a counter-clockwise manner, which determines the handedness of the clipping

test and the logical "in/out" location of points on the clipping polygon relative to the sub-

ject polygon. The input to the operation is the clipping and subject polygons, while the

output is the clipped polygon. If the output polygon is empty, there is no intersection. For
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eachedgeto clip against,thehandednessof anarbitrarypoint iseasilyfoundby takingthe

crossproductof thevectoralongthechppingedgewith thevectororiginatingfrom the

beginningof theedgeto thepointin question.For aclippingedgedescribedby thevector

alongpoint A to point B, thehandednessof thetestpoint,Pis foundfrom FigureA.2.

"Left"

P

B

A

"Right"

T = (xB - XA) (Yr- YA) -- (YB - YA) (XT-- XA)

7 > 0 Left

_[< 0 Right

Figure ._.2 Handedness Test for Polygon Clipping

For each edge of the current subject polygon, connecting point 1 to point 2, the handed-

ness of the points in relation to the current clipping edge is used to determine whether or

not to add point 1 and/or point 2 and/or the intersection of the subject edge with the clip-

ping edge to the output list. The logic behind the Sutherland-Hodgman clipping algorithm

is based upon the four possible combinations of handedness of the points 1 and 2, which

are shown in Figure A.3 to Figure A.6.
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Clipping Edge

Fi

1 "Left" and 2 "Left"

Add 2 to Output List

tre A.3 Points 1 and 2 Left

Clipping Edge

cdon

Figure A!4

1 "Left" and 2 "Right"

Add Intersection

to Output List

Point 1 Left and Point 2 Right

Clippia..:g Edge

1 1 "Right" and 2 "Left"

¢2 + Intersection

| Add Intersection and 2

Figure A! 5 Point 1 Righi:?P_t:_tLe LiSt
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Clipping Edge

1 "Right" and 2 "Right"

Do not add either to list

T
Figure A.6 Points 1 and 2 Right

For the polygon shown in Figure A. 1, the clipping procedure applied against the Carte-

sian clipping cell proceeds by clipping against the East then North then West and then

South faces, shown, respectively, in steps 1 to 4 in Figure A.7.
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Step

Clip_lane

i

1 "

I

Clip P1 _
itlle

IlllllllnllnllllllllllllS.'11.';;.'.'." .'." .-.-.-.-.-;.-_-7".lltllnlnlllllllnllllllllll

Step 4

Figure A.7 Application of Sutherlan

Clip Plane
___n______________________n_u__________u_________u___u___________un_____u__________u__

Step 2

Cll.p Plane

i

tep 3i
.

-Hodgman Clipping to Polygon Shown in
Figure A. 1

As seen here, the clipping operation returns the Boolean and of the clipper and clipped

polygon, but this is not always what is desired from the cell cutting operation. Consider

the Cartesian clipping polygon, C, the Subject polygon S, and the result of the polygon

clipping, polygon P1- Often, what is desired is P2, where C = P1 + P2 as is shown in

Figure A.8. As an example, ifS were the surface of an airfoil, and Pl is interior to the air-

foil, the computational cell needed would actually be P2- This entails determining

whether the clipped polygon lies within or exterior to the computational domain, and if it



217

lies within, recoveringthepolygon P2 = C- P1-

C

P2

Portion of

Subject
Polygon, S

Figure A.8 Relationships Between Clipping, Subject and Clipped Polygons

For body surfaces that are described by functions other than linear basis functions, the

clipping algorithm works much the same, but the intersections of the bodies with the clip-

ping, Cartesian cells, is found using a root finding procedure.

The grid generation procedure is applied in a re.cursive manner using the binary tree

data structure by recurring down the tree, staying within a sub-branch, until all leaves

below the sub-branch have either been cut, are determined to not need to be cut or have

been blanked. If a leaf cell is deemed inadequate for cutting, by either the cell size, bound-

ary face size or number of intersections with the body, a new sub-branch is created below

it, and the grid generation procedure recurs down through the new sub-branch. After all

cells have been cut, the mesh is examined for smoothness across refinement boundaries,

and is recursively smoothed by refining where the difference between refinement levels is

greater than one. Since the grid generation procedure is applied locally by recursion, it is

efficient and can generate base grids very quickly. Importantly, this procedure lends itself

well to a parallel implementation, since the grid generation below a given, coarse tree, will
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becontainedlocally within eachprocessor,andtheonly interprocessorcommunication

will beafterthebasegrid is generated,andis checkedfor refinementboundarysmooth-

ness.

To furtherdemonstratethecapabilityof theCartesiangrid generatorusingthepolygon

clipping,abasegrid in a flow passagerepresentativeof thecoolingpassagewithin atur-

binebladeis shown.Thegeometrycorrespondsto thatin [73], andis aprojectionontothe

xy planeof thegeometryin thecurvedsurfacethatis locatedalongtheturbineblademean

chordline. Thegrid contains2640cellsandwasgeneratedin 218secondsonan IBM

RS6000Model 560workstation.Thegeometrydefinitionis madeusinga linearly-repre-

sented,continuousouterboundaryand14coolingfins.

FigureA.9 TurbineCoolantPassages:BaseGrid
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FigureA.10Close-upof Pin Region



Appendix B

A Discrete Accuracy Analysis of two Cell-
centered Viscous Flux Formulae

If care is taken in the formulation, the discrete cell-centered, finite-volume formulation

of the Laplacian upon arbitrary meshes can be obtained given the gradient reconstruction

procedure. The result of this is, for each cell, the discrete weights of all the support cells

used in the Laplacian; the ¢x in (3.25). From these weights, the positivity and accuracy of

the stencil for each cell can be found by examining the sums in (3.29) and the weights in

(3.44). The primary drawback of this is that the resulting formulae do not readily yield

useful information, unless they axe evaluated on given meshes so that different reconstruc-

tions can be directly compared. So, the following shows the formulae obtained and how to

evaluate them on arbitrary meshes for the two candidate schemes. These are then used to

explain the behavior of the schemes when they are used to compute some low and moder-

ate Reynolds number flows.

B.3 General Laplacian: Diamond Path Reconstruction Using

the Linearity-Preserving Weighting

Applying the diamond-path type reconstruction procedure on an arbitrary N-sided

polygonal control volume, and expanding the resulting formula including all the weights

used to provide data at the subtended vertices of the face, the following general formula

for the Laplacian is obtained

F V

,_<Uo)=_0u0+Z t_e¢+Z r u_ <B_)
f=l v=l

The stencil contains all the first order neighbors of the cell, which are delineated by being
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eitherafaceor vertexneighbor.Thecontributionsfrom thefaceneighborsarefrom the

first summationfor theF faceneighbors,while thesecondsummationis overall of theV

vertexneighbors.Thecoefficientsin (B.1)containimportantinformationaboutthegeom-

etry of thegrid, cell facesandcell centroids,aswell astheweightsof thecellsusedto find

thedataat theverticessubtendingthefaces.Thecoefficientsare

F r No, f +fDO, f(NB,f, 1)]%= LB--A-- I -
f=l -1

(B.2)

NR,f + F (Ns,,, Nr,,,_l)_f - _ n_= lO3f'n_2AAn + _:-i
(B.3)

'Yv = "_ O_v,I + 2AAf l J (B.4)
f=l

The ¢Di,j are the weights of the i-th cell used in the cell weighting of the j-th vertex. For a

simple averaging procedure, these weights are the inverse of the number of ceils contribut-

ing to the average, while if a linearity-preserving weighting is used, the weights are found

from the more complicated procedure, (3.61) to (3.72). If the faces and vertices are

ordered in a positive (counter-clockwise) direction, then the vertex and face orderings are

meaningful, where the j-th face is subtended by the j-th and j+ 1-th vertices. The cell area

is A, and the area of the co-volume about the f-th face is Ay. The 19i are related to the cell

geometry and are the dot products of face normals and the normals to the vector that joins

the two centroids of the cells that share a face.



222

V2

Normal to Centroid/Centroid

Normal to Face

L

Figure B.1

V1

Important Geometric Terms in Diamond Path Reconstruction

R

After some manipulation, the coefficients in (B. 1) are found to be

oo,cot , ot0,,1O_0 = -I- ( -- (B.5)

+ _ _ (cotl_._ 1 -- cotl_ )_f - 2AAf n=l
(B.6)

7v = _ -_(c°tl_y-1- c°tl3/)

f= 1

(B.7)

where the ASf is the length of the f-th face. As can be seen, a positive scheme can be guar-

anteed if the following three conditions are all met

r r (as:)2
ZCOo.,f(c°t_Y-l-c°t_SY ) <<"Z 2Ay

1--1 /=1

(I3.8)

F (a@2
Z O)f,n(COt_n--COt_n-1) < 2Af

n=l

(B.9)
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F

E ¢Dv, n (cOt_n- 1 -- cotj] ) _>0 (B.10)

n=l

(B.8) guarantees that the weight of the object cell is negative, while (B.9) ensures the

weights of the face neighbors are positive. (B. 10) guarantees positivity of the vertex

neighbors contributions to the Laplacian.

A positive scheme can be guaranteed by a few different ways. If the cotangents are all

equal, the two cotangents in each sequence of the summations will cancel. This can be true

if the mesh is orthogonal, in that each face is perpendicular to the vector joining the cen-

troids that share the face, so that the cotangent is everywhere zero. Example meshes would

be a triangular mesh of all equilateral triangles or a quadrilateral mesh that is either

unstretched, or stretched along the coordinate axes only. In [7] it is shown that in two-

dimensions, a Delaunay mesh guarantees positivity when using a linear Galerkin, finite

element formulation, although for the reconstruction scheme here, a Delaunay mesh does

not guarantee it. A deeper analysis of the positivity criteria for the scheme here, upon a

general, triangular mesh is called for; on a general mesh, the strict inclusion of the weights

will undoubtedly greatly increase the complexity of the analysis.

For simpler meshes, a few points can be made, though. For the unique type of mesh

formed by equilateral triangles or by unstretched quadrilaterals, it can seen that the Lapla-

cian can be interpreted as a simple average of the surrounding cells. This simple average

results, on a uniform Cartesian mesh, with the desirable (-4,1,1,1,1) weighting of the cell

and its four face neighbors. Since in general, one can not guarantee that the cotangents are

equal, a more general way would be if the weights in the sums are all equal. Then, the

summation of the difference of the adjacent cotangents would vanish. But, this is very

restrictive, since many of the of, n are already zero (not every neighbor of the cell contrib-

utes to the vertex weighting of a particular face where the flux is found), and would

require that all the weights are zero. Then again, the simple face weighted Laplacian
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would result.Ongeneralmeshes,thiscanresultin avery inaccuratescheme,but can

ensurepositivity. Little canbesaidapriori asfar assensitivityof theschemeto non-

smoothnessof themeshisconcerned.Only experiencewith theschemeonvariousmeshes

cangive someinsightasto how it will behave.

B.3 General Laplacian: Kv = 2 Reconstruction

The general Laplacian using the K v = 2 is a bit more complicated than the diamond

path scheme. The reconstructed gradient involves the inverse of a general thirty-six ele-

ment Vandermonde type matrix, of which only two rows of the inverse are actually

needed. For a given face, consider the contribution of the j-th support cell to the recon-

structed gradient at a given face dotted with the face normal, D (u),

0D (u) • fi _ (A1)n x + A_)ny)
 .11)

The matrix A is formed in the face centered coordinate system that is scaled by the local

length scale, 8. The contribution of each cell to the assembled, discrete Laplacian is then

found by summing the contribution from each component face since

I _gD(u) "fi

C_- Area _-" i)uj (B.12)
faces

From this, the assembled Laplacian can be analyzed as before on different grids. Since

much of the inherent behavior of the Laplacian is hidden in a rather complicated manner

by the matrix A and its inverse, it is not obvious how different topologically similar grids

will behave, as opposed to, say, triangular grids, where things can be said about meshes

that satisfy a Delaunay-like adjacency. Although this may be true, insight into particular

grids as far as accuracy and positivity can be found by locally examining the Laplacian
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stencilcoefficientson generalmeshescreatedby theCartesian-meshgrid generator.

As is shownin theprecedinganalysisof thepositivity of thisschemeuponthemodel

grids,thereis no immediatelyobviousconnectionbetweensupport-setselectionandsten-

cil positivity.Someobviouschoicesof supportsetsarenot invertible,andsomeinvertible

setsgive positivestencils,while somedonot.Thepositivity constraintscomeaboutonly

afterthestencilis assembledin eachcell, which is greatlycomplicatedby thefact thatthe

gradientscomputedateachfacecontributesto thestencilof thetwo ceilsthatsharethe

face.Fromthis, it canbeseenthatthepositivity constraintis actuallyanimplicit inequal-

ity constraintthatcouplesall cellstogetherthroughtheconservationlaw formulation.

In practice,a carefullyorganizedprocedureis neededto find thesupportsetsabout

eachface.Theprocedureusedto find thesupportsetto performthereconstructionateach

faceisbaseduponusingthedirectedfaceneighborsto theface.If thereis notenoughdata

to invert thesystem,thenextavailablecellsin aprioritizedlist arechosento closethe sys-

tem.Thisprioritizedlist is formedby orderingtheextracellsin increasingdistancefrom

thefacemidpoint,in thespirit of thestencilselectioncriterionpresentedin [55]. The

matrix is thenassembledandexaminedto seeif it is singularor ill-conditioned.Sincean

ill-conditionedmatrixcould indicateapoorstencil,thiscriterion is morestringentthan

just checkingfor singularity,andshouldyieldbetterstencils.In thiscase,the stencilis

consideredto representan ill-conditionedstencil if thedeterminantis lessthansomecut-

off value,takenhereto be 1×10-5 . If thechosensupportsetis foundto yield asingularor

ill-conditionedstencil,the lastaddedcell to thesupportlist is deleted,andthenextavail-

ablecell in the list of extracells isaddedin its place,anda newmatrixassembledand

examined.This processrecursuntil awell-conditionedmatrix is foundor thecellsin the

auxiliarysupportlist areexhausted.If this is thecase,theprocedureis re-initialized,but

nowalinear reconstructionis recursivelysearchedfor. In this way,thestencilsearchpro-
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cesswill always yield a reconstruction that in the worst case is a linear reconstruction.

This procedure typically yields grids where over 98 percent of the interior faces use a qua-

dratic reconstruction.
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